UDR: UDT + RSYNC

Open Source Fast File Transfer

Allison Heath
University of Chicago

CSDC iac Bdnicico

Motivation for High Performance
Protocols

* High-speed networks (10Gb/s, 40Gb/s, 100Gb/s, ...)

- Large, distributed datasets

» TCP does not scale well as network bandwidth-delay
product (BDP) increases

UDT: UDP-based Data Transfer

* Reliable UDP based application level protocol

Application

UDT Socket

S)9eq|leD OO

OS Socket Interface

=
@
3
o
<
O
O
O
<
0
<
O
®
7
7

A Brief History of UDT

» Started in 2001 (SABUL)

« Bulk data transfer: control information over TCP, data over UDP

 Naive congestion control

« UDT v2
 Both control and data over UDP

* Fast, fair, and friendly congestion control

« UDT v3

» Configurable congestion control

* Partial reliability & messaging

« UDT v4

* Multiple UDT sockets on single UDP port

» Better efficiency and congestion control

Current UDT Feature Summary

* Protocol design to support reliable, efficient packet
processing

- Efficient native congestion control algorithm

» Configurable congestion control

» Optimized implementation as a user level C++ library
» API, as similar as possible to BSD sockets

» Supports Linux, BSD, OS X, and Windows

* Open source BSD license

* Available at udt.sourceforge.net

UDT Results

» 2006, 2008, 2009 Supercomputing Bandwidth Challenge
Winner

* Disk to disk 9 Gbps over 10 Gbps long distance links

 Efficient, fair and stable

Flow 1

Flow 2

Flow 3

Flow 4

Efficiency

Fairness

Stability

Moving Forward with UDT

* Open source and BSD license: udt.sourceforge.net
* Why has UDT not been more widely adopted!?

 Some answers:

* Lack of accessibility

» Lack of knowledge for tuning/configuration required to achieve best
performance

* Goal: Create a suite of easy to use data transfer applications
that utilize UDT

UDT: Buffers and CPUs

Time to Transfer | TB
(minutes)

Configuration Change | Observed Transfer Rate

UDT and Linux Defaults 1.6 Gbps

Setting buffers sizes to

64 MB 3.3 Gbps

Improved CPU on
sending side with 3.7 Gbps
processor affinity

Improved CPU on
receiving side with 4.6 Gbps
processor affinity on

Improved CPU on both
sides with processort 6.3 Gbps
affinity on both sides

Removing CPU clock

scaling S e o

UDStar

 There are a number of familiar data transfer tools that are in
use: rsync, scp, ftp, (your favorite here)

 Goal: make them UDT-enabled with as little effort on the
user’s part as possible

UDR

* First component of UDStar
* UDT + rsync
* Lightweight wrapper around rsync that allows it to use UDT

- Made possible because rsync communicates via pipes to the
remote shell

» Utilize the rsync -e option

UDR Implementation

Source Destination

Authenticated
UDR —»| SSH —— Encrypted @ —»| SSHD —»| UDR -t
TCP Connection
<_ SSH |<€— Send back UDT UDR -t
I port num \

Fork and exec rsync
with -e UDR and the
specified port number

v

rsync -e Establish UDT
UDR connection

rsync -e rsync tranfer rsync
UDR over UDT connection server

UDR: Current User Perspective

* Download from GitHub: github.com/LabAdvComp/UDR

» Apache 2.0 Licensed
» Compile, only dependency is OpenSSL

* Once installed on both sides:

* udr [udr options] [standard rsync command]

* Includes encryption based on OpenSSL (off by default)

« 128, 192,and 256 AES
« 3DES
« Blowfish

UDR Server

* Modeled after rsync server

* Lightweight python server to handle UDR requests and run
the appropriate process on the server

 Enabled users without accounts to download data

* Most configurations options are obtained from a provided
rsyncd.conf

Evaluating Disk to Disk Transfer

* Transfers limited by a number of factors:

* Read speed on source data volume
* Write speed on destination data volume

* Lowest bandwidth on connections linking the volumns
* Round Trip Time (RTT)

* Normalize performance to be independent of particular
disks used:

» transfer speed / min(source data volume read speed, destination data
volume read speed)

* Long Distance to Local Ratio (LDLR)

UDR Results: |00 GB Transfer

» Tested between UChicago Kenwood Facility and FIU

* |0G connection, RTT is 52ms
* |00 GB transfer

Avg Mbps
UDT Memory to Memory 6699
UDT Send/Recv File 2185
UDR 0.9 (no encryption) 9216
UDR 0.9 (aes-128) 391

rsync (no encryption) 423
rsync (aes-128) 249

UDR Results;: ENCODE

Initial 6 Hours of ENCODE Data Transfer Between Santa Cruz and Chicago

1] 1 |

- UDR (no encryption)
- rsync (no encryption)

1400+

1200+

1000

800

Mbit/second

150 200 250 300 350
Time (minutes)

UDR Results: UCSC Genome Browser

Santa Cruz, CA Milwaukee, Wi
Santa Cruz, CA Detroit, Ml
Santa Cruz, CA Bielefeld, Germany
Santa Cruz, CA Aarhus, Denmark

Santa Cruz, CA Brisbane, Austrialia

OSDC Public Data via UDR

* Data currently available via rsync and UDR

* www.opensciencedatacloud.org/publicdata

Download/synchronize Sloan Digital Sky Survey Data Release 8:

¢ Using rsync: rsync -avzu guest@128.135.107.145:/glusterfs/osdc_public_data/sdss_bestdr8/ /path/to/local_copy
e Using UDR: udr rsync -avzu guest@128.135.107.145:/glusterfs/osdc_public_data/sdss_bestdr8/ /path/to/local_copy

http://www.opensciencedatacloud.org/publicdata
http://www.opensciencedatacloud.org/publicdata

Next Steps for UDR

* Rsync-like server functionality for UDR

» Testing and improvements

* Packaging for easier installation

e Stable 1.0 release in 2013
 Current;:0.9.3

Beyond UDR: UDStar

* |nitial UDR component developed and released

 Next: UDT-enabled SCP
+ FTP? SFTP?

* Interested in hearing from potential users

 Other language wrappers for UDT to encourage
development, some interest in python, java, others!?

THANK YOU

orthub.com/LabAdvComp/UDR
udt.sourceforge.net

www.opensciencedatacloud.org

