RUTGERS

An Introduction to SAGA and BigJob

OSDC-PIRE Workshop
Edinburgh, 20 June 2013

Overview

SAGA: Simple API for Distributed (“Grid”) Applications
— Native Python implementation of Open Grid Forum GFD.90

— Allows access to different middleware / services through unified
interface

— Provides access via different backend plug-ins (“adaptors”)

Unified Semantics:

— saga-python provides not only a common API, but also unified
semantics across heterogeneous middleware:

« Transparent Remote operations (SSH / GSISSH tunneling)
« Asynchronous operations

« Callbacks

« Error Handling

RUTGERS

SAGA: Standard for Distributed Applications

PBS Cluster Condor Grid

SAGA AP A
% - 'J‘:-Z’ — — —
SAGA-based Distributed Applications, Frameworks & Tools Ancicat SESEEne an FRIRyetom
pplication
Developers
1
el boeoocceeem- \
| Runtime Layer A\ | : |
I 1
’ 1 1 < - |
Adaptor API Call |
| Manager Dispatcher |
| FT)
! 2
I ' ® |
| . 9 :
| Adaptor Layer A | v B :
<
————
4 l «contribe I 2 |
Q ‘ '(J- (J]; 4‘ 1; } ! Resource Job Fllesystem s
P e . el sl . el . e . -
q \ | Infrastructure / Plug-ins Plug-Ins || Plug-ins o |
File Advert Replica Job SD Adaptors | Capability Providers I 7\ 2 |
Adaptors |lff Adaptors |lff Adaptors |lff Adaptors Adaptors | |
| =
! [
! [
' [
! [
|

Supported Middleware and Services

* Job Submission Systems
— SSH, GSISSH, Condor, Condor-G, PBS(-Pro), TORQUE, SGE, SLURM

* File / Data Management
— SFTP, GSIFTP, HTTP, HTTPS, (iRODS under development)

 Resource Management / Clouds
— Amazon EC2 (‘libcloud’-based)

Application examples

« Application is a broad term: “one person’s application is another
person’s tool (building block)”.

* saga-python is used in a plethora of contexts:
— DCI federation: Cloud v.s. Grid v.s. HPC (or hybrid?)
— Pilot job and Master-Worker frameworks
— Science gateways and web portals
— Custom, domain-specific distributed applications

Getting Started

« saga-python website:
http://saga-project.github.io/saga-python/

o twitter: https://twitter.com/SAGAGridAPI

* mailing-list:
https://groups.google.com/forum/?fromgroups#!forum/saga-
users

Introduction to Pilot-dobs

Introduction to Pilot Jobs

» Working definition: a system that generalizes a placeholder job to
provide multi-level scheduling to allow application-level control
over the system scheduler via a scheduling overlay

S § User Application Pilot-Job System
w .
58 OO0O0O0O Pilot-Job) Pilot-Job| | |" olcies
esource Manat
z 3
? 8
n P

Resource A Resource B Resource C Resource D

Introduction to Pilot-Jobs (2)

« Working definitions:

— A system that generalizes a placeholder job to provide multi-level

scheduling to allow application-level control over the system scheduler
via a scheduling overlay

— “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

« Advantages of Pilot-Job systems:
— Avoid limitations of system-level only scheduling

» Application Level Scheduling: Abstraction between application and
resource layer

— Flexible Resource Management

« Enable the “slicing and dicing” of resources
— Move control and flexibility “upwards”

* e.g., finer grained temporal control

PilotJob Paradigm

Based upon analysis of Pilot-Job several implementations

Architecture: Three distinct logical elements:

 Workload Manager: Responsible for making available the tasks to
the executor alongside the needed data and retrieving results

- Task Executor: Responsible for executing the tasks while managing
their data.

« Communication and Coordination (C-C): Patterns allow for and
regulate the interaction between (and within) these two components.

Execution Patterns: Based on multi-level scheduling and late-binding:

* Multi-level scheduling. Tasks of a workload are scheduled on one
or more pilots and the pilots are then scheduled on a given resource

Capability/Functionality: A system that generalizes a placeholder job to
provide multi-level scheduling to allow application-level control over the
system scheduler via a scheduling overlay

P*: Theory and Practice of Pilot-Jobs

P* Model: Elements, Characteristics and API

1) submit pilot .
Apgication description
— 4) submit CLJ —

Elements:

— Pilot-Compute (PC)
— Pilot-Data (PD)

— Compute Unit (CU)
— Data Unit (DU)

— Scheduling Unit (SU)
— Pilot-Manager (PM)
Characteristics:

— Coordination

— Communication

— Scheduling
Pilot-API

2) s bmit pilot

‘_,.,-/""

Resource Manager

3) start pilot

Resource

9)schedule SU to plot

Application

L

1) submit pilot
Apglication |~ description
4) submit CU
it pilot
I
I
1

P* Elements

Pilot-Compute o[
* The placeholder entity that gets submitted to a resource

« Also, associated with the role of an agent:
— collects information
— manages the resources allocated
— exchanges data

« Executes application code
Pilot-Data

* The placeholder entity that represents a storage resource
(reservation)

« Can have the role of an agent:
— collects information
— manages the resources allocated

* Physically stores the data

P* Elements

| 1) suteit pilot

Apgication description

- 4) sutmit CU

2) sutenit pilot
I SOUIce
I

i 1]
i
i

Compute Unit (CU)
 |s defined by the application

« Encapsulates a self-contained piece of work that is submitted
to the PJ system

- E.Q.

— task, job, rpc, web service call, etc.
Data Unit (DU)
 |s defined by the application

« Encapsulates a self-contained piece of logical data that is
submitted to the PJ framework

- E.Q.

— file, chunk, database, etc.

Pilot-API: Unified API to Pilot-Compute and
Pilot-Data

Application Application
/N ' 6) submit
1) create_pilot 3) create_pilot 5) add) submi] o
(PilotComputeDescription) (PilotDataDescription) pilots (ComputeUnitDescription or
DataUnitDescription)
PilotComputeService PilotDataService ComputeDataService
2) s‘tart 3) s'tart 7) schedule
(Pilof) (Pilof) (SchedulingUnit)
PilotCompute PilotData PilotCompute PilotData
Managing Pilots Managing Application

Workload

BigJob: A Reference Implementation
of the P* Model

Understand terms:
http://saga-project.github.io/BigJob/sphinxdoc/usage/appwriting.html

Bigdob: Implementation of the P* Model

1) run big-job
Appication EigJob-
- Manager
4)run subjob : : 5) creak
2) subeit \2] ubmit] subijebenty
— A \
P h Distrituted
Fesource Manager 1 FResource Manager N Enojﬂnaﬂon
N _@sert || _______ 3)Start __, _ Senvice
! BigJbob Agent | BigJob-fgent | / Resource
) AT ! PN ST T H
| Bgiobagent! | 1| [BgdobAgent N | o bt
'} I !
| ?] Manage su b-jOhS ! ?] Manage sub-jobs 1
S AT S o | s L
1 i n 3 |
App AFP H App App ; G
E : i! Kernel M Kernel : I:l Appication
| s ! DS,
supib D0 osubpn HillE subpp | subjob EigJob
| RO S O SO S O S Sl S SO S S S 1 B Ty Ty Py SR PRy R P 1
Application
Resource 1 Resource N prl

Kernel

BigJob Workload Management

smbuteDataSe o) puted Cooradinatio
1. Submit CUs/DUs CU Queues Information
Dilot-Manaae 5 1 Global [Pilot-Computes]
2.1 Place DUs Place __ oo [Piot-Data__|
Transfer CUs Pllot 1 | Compute-Units I
Scheduler D
Manager — o [Data-Units__|
2.2 Manage Transfer 3.2 Pull Periodic State
to Pilot Data CUs Updates
]
Pilot-Agent

Pilot-Data

Pilot-Compute

Data- Data- 4. Pull Compute-
Unit Unit DUs Unit

BigJob: Resource Interoperability

Distributed Application

)

]

i

]

)

®
(&)
Pilot API/BigJob 8
D
Pilot Data o
n
o M

XSEDE FutureGrid HTC (OSG/EGI) Amazon
Local/ Local/ Local / ()
Blob Local SRM S3 —
(ssHe0) ssry i (Wars) = g
=
Node EUCA VM Node EC2 VM %
|[|E

Pilot-Data Performance

... support different transfer protocols
and storage backends. YMMV

.__i_._l.-.l.-

1024 2048 4096

File Size (in MB)

8192

M Amazon S3MGO (XSEDE)MIRODS (OSG)MSSH (Engage/OSG)

Different types of coupling between these tasks
— Uncoupled Tasks, Loosely-Coupled Tasks, Sequential Tasks..
Considerations:

— “Coupling” general concept for data sharing, synchronization, other
dependency

— Varying rate of coupling between tasks/simulations
— Regqular versus Irregular synchronization:
« Temporal time
— Ad hoc pair wise exchange
* No a priori determined exchange partners
— Varying task duration: hours to days to weeks

Pilot-Abstraction: Supporting Heterogeneous
Application Workloads

Pilot MapReduce Replica-Exchange
Framework x
Framework Framework
MR Manager Replica Manager
DU CuU CuU Cu
.1

ST

Pilot Manager

!

Cloud Resource Grid Resource Resource x
Pilot-Agent Pilot-Agent
Data- Comp Data- Comp
Unit ute- Unit ute-
Unit Unit

“Slice and Dice” Resources

100000 ~

10000 - RN

100 - RN

number of ensembles
/

10 - \lD\E’I\L

of Ensemble Members

1 T T T
1 10 100 1000 10000

size of ensemble (core)

Number of cores per Ensemble Member

Scaling Along Many Dimensions

Scaling Dimension #1: Size of each task

— Scale-up

— 1 core per task, 128 cores per task..
Scaling Dimension #2: Total Number of Tasks
— Scale-Out

— Enhanced Sampling in molecular simulations O(1000), statistical
errors O(1076),...

Scaling Dimension #3: Number of Resources Used

— Scale-Across

— Execute on Clouds, Clusters, Supercomputers

Scaling Dimension #4: Total Number of Tasks/per unit time
— Real time processing

“Coarse-Grained” BigJob Performance

Number of tasks that BJ can dispatch per second:

— Distributed: O(10)

— Locally: > O(10)

Number of Pilots (Pilot-Agents) that can be marshaled
— Locally/Distributed: O(100)

Number of tasks concurrently managed:
— Number of Pilot-Agents x Per each agent = O(100) x O(1000)

Typical number of sub-jobs per Pilot-Agent:
— Locally/distributed: O(1000)

Obviously the above depend upon data per task:
Range of data: O(1)--O(10°) Bytes
Duration of each task: O(1) second to O(10°) seconds

RUTGERS

Kraken: 126 ensembles, each of 192 cores = 24192 cores

400 1 1 1 1 1 g
350 | W wait time]
300 | run time ;
=250 |
£ 200] :_
g 3 |
~ 150 | 3 5
©
100 | :
i
0 :
1 2 3 4 5 6 7 8 9
Experiment #] g

2050
ZOOOE H i
/
SOE VJ k j
(] el el b s [EwarED | B {ErEErED R TN 143
0 1 2 3 4

5 6 7 8

Run Time (hrs)

References

« P*: A Model of Pilot-Abstractions”, 8" IEEE International
Conference on e-Science 2012 (DOI: 10.1109/eScience.

2012.6404423)

“Distributed Computing Practice for Large-Scale Science
& Engineering Applications” Shantenu Jha, Daniel S. Katz,
Jon Weissman et al, Computing and Concurrency: Practice
and Experience, 2012 (DOI: 10.1002/cpe.2897)

 “Pjlot-Data: An Abstraction for Distributed Data”,
arXiv:1301.6228

References

 SAGA-Python:

— http://saga-project.github.io/saga-python/
* BigJob: An implementation of P*

— http://github.com/saga-project/BigJob/wiki
 RADICAL.:

— http://radical.rutgers.edu/
* Publications:

— http://radical.rutgers/edu/publications

Acknowledgements

Graduate Students:

* Ashley Zebrowski
 Melissa Romanus
 Mark Santcroos
 Anton Trekalis
Undergraduate Students:
* Vishal Shah

Research Scientist/Programmer:
 Andre Luckow

* Andre Merzky

« Matteo Turilli

« Ole Weidner

