
An Introduction to SAGA and BigJob

http://radical.rutgers.edu

OSDC-PIRE Workshop
Edinburgh, 20 June 2013

Overview
•  SAGA: Simple API for Distributed (“Grid”) Applications

–  Native Python implementation of Open Grid Forum GFD.90
–  Allows access to different middleware / services through unified

interface
–  Provides access via different backend plug-ins (“adaptors”)

•  Unified Semantics:
–  saga-python provides not only a common API, but also unified

semantics across heterogeneous middleware:
•  Transparent Remote operations (SSH / GSISSH tunneling)
•  Asynchronous operations
•  Callbacks
•  Error Handling

SAGA: Standard for Distributed Applications

Supported Middleware and Services

•  Job Submission Systems
–  SSH, GSISSH, Condor, Condor-G, PBS(-Pro), TORQUE, SGE, SLURM

•  File / Data Management
–  SFTP, GSIFTP, HTTP, HTTPS, (iRODS under development)

•  Resource Management / Clouds
–  Amazon EC2 (‘libcloud’-based)

Application examples

•  Application is a broad term: “one person’s application is another
person’s tool (building block)”.

•  saga-python is used in a plethora of contexts:
–  DCI federation: Cloud v.s. Grid v.s. HPC (or hybrid?)
–  Pilot job and Master-Worker frameworks
–  Science gateways and web portals
–  Custom, domain-specific distributed applications

Getting Started

•  saga-python website:
http://saga-project.github.io/saga-python/

•  twitter: https://twitter.com/SAGAGridAPI
•  mailing-list:

https://groups.google.com/forum/?fromgroups#!forum/saga-
users

Introduction to Pilot-Jobs

Introduction to Pilot Jobs
•  Working definition: a system that generalizes a placeholder job to

provide multi-level scheduling to allow application-level control
over the system scheduler via a scheduling overlay

8

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

S

pa
ce

U
se

r
S

pa
ce

Resource Manager

Pilot-Job System
Policies Pilot-Job Pilot-Job

Introduction to Pilot-Jobs (2)
•  Working definitions:

–  A system that generalizes a placeholder job to provide multi-level
scheduling to allow application-level control over the system scheduler
via a scheduling overlay

–  “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

•  Advantages of Pilot-Job systems:
–  Avoid limitations of system-level only scheduling

•  Application Level Scheduling: Abstraction between application and
resource layer

–  Flexible Resource Management
•  Enable the “slicing and dicing” of resources

–  Move control and flexibility “upwards”
•  e.g., finer grained temporal control

9

PilotJob Paradigm
Based upon analysis of Pilot-Job several implementations

Architecture: Three distinct logical elements:

•  Workload Manager: Responsible for making available the tasks to
the executor alongside the needed data and retrieving results

•  Task Executor: Responsible for executing the tasks while managing
their data.

•  Communication and Coordination (C-C): Patterns allow for and
regulate the interaction between (and within) these two components.

Execution Patterns: Based on multi-level scheduling and late-binding:
•  Multi-level scheduling. Tasks of a workload are scheduled on one

or more pilots and the pilots are then scheduled on a given resource

Capability/Functionality: A system that generalizes a placeholder job to
provide multi-level scheduling to allow application-level control over the
system scheduler via a scheduling overlay

P*: Theory and Practice of Pilot-Jobs

P* Model: Elements, Characteristics and API

•  Elements:
–  Pilot-Compute (PC)
–  Pilot-Data (PD)
–  Compute Unit (CU)
–  Data Unit (DU)
–  Scheduling Unit (SU)
–  Pilot-Manager (PM)

•  Characteristics:
–  Coordination
–  Communication
–  Scheduling

•  Pilot-API

P* Elements

Pilot-Compute
•  The placeholder entity that gets submitted to a resource
•  Also, associated with the role of an agent:

–  collects information
–  manages the resources allocated
–  exchanges data

•  Executes application code
Pilot-Data
•  The placeholder entity that represents a storage resource

(reservation)
•  Can have the role of an agent:

–  collects information
–  manages the resources allocated

•  Physically stores the data

P* Elements

Compute Unit (CU)
•  Is defined by the application
•  Encapsulates a self-contained piece of work that is submitted

to the PJ system
•  E.g.:

–  task, job, rpc, web service call, etc.

Data Unit (DU)
•  Is defined by the application
•  Encapsulates a self-contained piece of logical data that is

submitted to the PJ framework
•  E.g.:

–  file, chunk, database, etc.

Pilot-API: Unified API to Pilot-Compute and
Pilot-Data

BigJob: A Reference Implementation
of the P* Model

Understand terms:
 http://saga-project.github.io/BigJob/sphinxdoc/usage/appwriting.html

BigJob: Implementation of the P* Model

BigJob Workload Management

BigJob: Resource Interoperability

Pilot-Data Performance

… support different transfer protocols
and storage backends. YMMV

“Many Simulations”: Background and Scenarios

•  A Single “Application” is broken into many smaller tasks
–  Naturally decomposed or “by design” (algorithmic and infrastructural)
–  Exploiting parallelism: coarse-grained

•  Different types of coupling between these tasks
–  Uncoupled Tasks, Loosely-Coupled Tasks, Sequential Tasks..

•  Considerations:
–  “Coupling” general concept for data sharing, synchronization, other

dependency
–  Varying rate of coupling between tasks/simulations
–  Regular versus Irregular synchronization:

•  Temporal time
–  Ad hoc pair wise exchange

•  No a priori determined exchange partners
–  Varying task duration: hours to days to weeks

Pilot-Abstraction: Supporting Heterogeneous
Application Workloads

“Slice and Dice” Resources

Number of cores per Ensemble Member

of Ensemble Members

•  Scaling Dimension #1: Size of each task
–  Scale-up
–  1 core per task, 128 cores per task..

•  Scaling Dimension #2: Total Number of Tasks
–  Scale-Out
–  Enhanced Sampling in molecular simulations O(1000), statistical

errors O(10^6),…
•  Scaling Dimension #3: Number of Resources Used

–  Scale-Across
–  Execute on Clouds, Clusters, Supercomputers

•  Scaling Dimension #4: Total Number of Tasks/per unit time
–  Real time processing

Scaling Along Many Dimensions

“Coarse-Grained” BigJob Performance

•  Number of tasks that BJ can dispatch per second:
–  Distributed: O(10)
–  Locally: > O(10)

•  Number of Pilots (Pilot-Agents) that can be marshaled
–  Locally/Distributed: O(100)

•  Number of tasks concurrently managed:
–  Number of Pilot-Agents x Per each agent = O(100) x O(1000)

•  Typical number of sub-jobs per Pilot-Agent:
–  Locally/distributed: O(1000)

•  Obviously the above depend upon data per task:
 Range of data: O(1)--O(109) Bytes

•  Duration of each task: O(1) second to O(105) seconds

Kraken: 126 ensembles, each of 192 cores = 24192 cores

References
•  ``P*: A Model of Pilot-Abstractions”, 8th IEEE International

Conference on e-Science 2012 (DOI: 10.1109/eScience.
2012.6404423)

•  “Distributed Computing Practice for Large-Scale Science
& Engineering Applications” Shantenu Jha, Daniel S. Katz,
Jon Weissman et al, Computing and Concurrency: Practice
and Experience, 2012 (DOI: 10.1002/cpe.2897)

•  “Pilot-Data: An Abstraction for Distributed Data”,
arXiv:1301.6228

References

•  SAGA-Python:
–  http://saga-project.github.io/saga-python/

•  BigJob: An implementation of P*
–  http://github.com/saga-project/BigJob/wiki

•  RADICAL:
–  http://radical.rutgers.edu/

•  Publications:
–  http://radical.rutgers/edu/publications

Acknowledgements
Graduate Students:
•  Ashley Zebrowski
•  Melissa Romanus
•  Mark Santcroos
•  Anton Trekalis
Undergraduate Students:
•  Vishal Shah
Research Scientist/Programmer:
•  Andre Luckow
•  Andre Merzky
•  Matteo Turilli
•  Ole Weidner

