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Overview

SAGA: Simple API for Distributed (“Grid”) Applications
— Native Python implementation of Open Grid Forum GFD.90

— Allows access to different middleware / services through unified
interface

— Provides access via different backend plug-ins (“adaptors”)

Unified Semantics:

— saga-python provides not only a common API, but also unified
semantics across heterogeneous middleware:

« Transparent Remote operations (SSH / GSISSH tunneling)
« Asynchronous operations

« Callbacks

« Error Handling
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SAGA: Standard for Distributed Applications
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Supported Middleware and Services

* Job Submission Systems
— SSH, GSISSH, Condor, Condor-G, PBS(-Pro), TORQUE, SGE, SLURM

* File / Data Management
— SFTP, GSIFTP, HTTP, HTTPS, (iRODS under development)

 Resource Management / Clouds
— Amazon EC2 (‘libcloud’-based)



Application examples

« Application is a broad term: “one person’s application is another
person’s tool (building block)”.

* saga-python is used in a plethora of contexts:
— DCI federation: Cloud v.s. Grid v.s. HPC (or hybrid?)
— Pilot job and Master-Worker frameworks
— Science gateways and web portals
— Custom, domain-specific distributed applications



Getting Started

« saga-python website:
http://saga-project.github.io/saga-python/

o twitter: https://twitter.com/SAGAGridAPI

* mailing-list:
https://groups.google.com/forum/?fromgroups#!forum/saga-
users




Introduction to Pilot-dobs




Introduction to Pilot Jobs

» Working definition: a system that generalizes a placeholder job to
provide multi-level scheduling to allow application-level control
over the system scheduler via a scheduling overlay
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Introduction to Pilot-Jobs (2)

« Working definitions:

— A system that generalizes a placeholder job to provide multi-level

scheduling to allow application-level control over the system scheduler
via a scheduling overlay

— “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

« Advantages of Pilot-Job systems:
— Avoid limitations of system-level only scheduling

» Application Level Scheduling: Abstraction between application and
resource layer

— Flexible Resource Management

« Enable the “slicing and dicing” of resources
— Move control and flexibility “upwards”

* e.g., finer grained temporal control



PilotJob Paradigm

Based upon analysis of Pilot-Job several implementations

Architecture: Three distinct logical elements:

 Workload Manager: Responsible for making available the tasks to
the executor alongside the needed data and retrieving results

- Task Executor: Responsible for executing the tasks while managing
their data.

« Communication and Coordination (C-C): Patterns allow for and
regulate the interaction between (and within) these two components.

Execution Patterns: Based on multi-level scheduling and late-binding:

* Multi-level scheduling. Tasks of a workload are scheduled on one
or more pilots and the pilots are then scheduled on a given resource

Capability/Functionality: A system that generalizes a placeholder job to
provide multi-level scheduling to allow application-level control over the
system scheduler via a scheduling overlay



P*: Theory and Practice of Pilot-Jobs




P* Model: Elements, Characteristics and API
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P* Elements

Pilot-Compute o[
* The placeholder entity that gets submitted to a resource

« Also, associated with the role of an agent:
— collects information
— manages the resources allocated
— exchanges data

« Executes application code
Pilot-Data

* The placeholder entity that represents a storage resource
(reservation)

« Can have the role of an agent:
— collects information
— manages the resources allocated

* Physically stores the data




P* Elements
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Compute Unit (CU)
 |s defined by the application

« Encapsulates a self-contained piece of work that is submitted
to the PJ system

- E.Q.

— task, job, rpc, web service call, etc.
Data Unit (DU)
 |s defined by the application

« Encapsulates a self-contained piece of logical data that is
submitted to the PJ framework

- E.Q.

— file, chunk, database, etc.




Pilot-API: Unified API to Pilot-Compute and
Pilot-Data
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BigJob: A Reference Implementation
of the P* Model

Understand terms:
http://saga-project.github.io/BigJob/sphinxdoc/usage/appwriting.html



Bigdob: Implementation of the P* Model
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BigJob Workload Management
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BigJob: Resource Interoperability
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Pilot-Data Performance

... support different transfer protocols
and storage backends. YMMV
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Different types of coupling between these tasks
— Uncoupled Tasks, Loosely-Coupled Tasks, Sequential Tasks..
Considerations:

— “Coupling” general concept for data sharing, synchronization, other
dependency

— Varying rate of coupling between tasks/simulations
— Regqular versus Irregular synchronization:
« Temporal time
— Ad hoc pair wise exchange
* No a priori determined exchange partners
— Varying task duration: hours to days to weeks



Pilot-Abstraction: Supporting Heterogeneous
Application Workloads
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“Slice and Dice” Resources
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Scaling Along Many Dimensions

Scaling Dimension #1: Size of each task

— Scale-up

— 1 core per task, 128 cores per task..
Scaling Dimension #2: Total Number of Tasks
— Scale-Out

— Enhanced Sampling in molecular simulations O(1000), statistical
errors O(1076),...

Scaling Dimension #3: Number of Resources Used

— Scale-Across

— Execute on Clouds, Clusters, Supercomputers

Scaling Dimension #4: Total Number of Tasks/per unit time
— Real time processing



“Coarse-Grained” BigJob Performance

Number of tasks that BJ can dispatch per second:

— Distributed: O(10)

— Locally: > O(10)

Number of Pilots (Pilot-Agents) that can be marshaled
— Locally/Distributed: O(100)

Number of tasks concurrently managed:
— Number of Pilot-Agents x Per each agent = O(100) x O(1000)

Typical number of sub-jobs per Pilot-Agent:
— Locally/distributed: O(1000)

Obviously the above depend upon data per task:
Range of data: O(1)--O(10°) Bytes
Duration of each task: O(1) second to O(10°) seconds
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Kraken: 126 ensembles, each of 192 cores = 24192 cores
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