DMOOOOpoums
O\\‘ UTAT ION/\L k-
HEMISTRY =

womm

_.
10
1
1

| sty

535 53558

RADICAL-Cybertools: Abstractions-based Tools
for Large-Scale Data-Intensive Applications

Outline: Part | (Lecture)

* A broad perspective on data-intensive science

— Rich and diverse landscape of data-intensive architectures, applications and
software systems

— Need for Balanced, Interoperable and Federated CI
» Architectures for data-intensive applications
 HPC vs Grids vs Clouds?

» A Tale of Two Data Intensive Paradigms
— BigData Ogres (mini-app, macro/micro patterns, skeleton)
 Variations of “task level” parallelism and variants, Kmeans
— HPC vs Hadoop/Apache Big Data stack (ABDS)
» Convergence? Consilience between HPC and Apache/Hadoop?

 Introduction to RADICAL-Cybertools
— Abstractions-based tools for interoperable extensible “task-level parallelism”

Outline: Part Il (Hands On)

 RADICAL Cybertools:
— RADICAL-SAGA Interoperability Layer
» Basics
 Tutorial
» Side detour: SAGA-Hadoop
— RADICAL-Pilot
» Basics
e Tutorial
— Kmeans redux
* Multiple Kmeans concurrently
» Trade-off: number vs size
« Kmeans Map Reduce

Exponential Growth of High-end Computing

Growth in
Supercomputer Power
1 021 = Logarithmic Plot
20 3
10 -
19 - Required for Human Brain Neural
. 10 s Simulation for Uploading (2025) ———
o
é 1 015 ;
©
@ 17 -
8 10 -
= 16 Required for Human Brain
s 10 - Functional Simulation (2013) ———
Q
o 15 =
-,% 10 L Blue Gene/P MDGrape 3 based
§ 10[4 E ASCI Purple Blue Gene/L
o E Earth Simulator SX-8
Q 13 ° Columbia
= 10 - ASCI White
10° _ " ASCI Red ASCI Red Trendline
- Wind Tunnel CP-PACS/2048 —O0— Planned
1Oll i SR2201/1024
E Num. Wind Tunnel
10 - CM-5/1024
100 4 1 1 1 1 1 1 1 1
1990 1995 2000 2005 2010 2015 2020 2025 2030
Doubling time = 1.2 years Year

HW: Think about the implications of this graph.

RUTGERS

Compute & Data: Two sides of the same coin
An Interesting Observation

I Baseline information []
Cost of genome sequencing compared with
Moore's law for computers

Log scale
100,000
Cost of computing
(Moore's law) 10,000
1,000
100
10
$ per million DNA bases
1.0

| B | Y

1]
1999 2002 04 06 08 10

Source: Broad Institute

Data-intensive Sciences

8l High Energy Physics:

 LHC at CERN produces petabytes of data per day.
» Data is processed and distributed across Tier 1 and 2 sites.

Astronomy:

« Sloan Digital Sky Survey (80 TB over 7 years).
o LSST will produce 40 TB per day (for 10 years).

"p\](é Geonomics:

_1__,.! e Data volume increasing with every new generation of
_4“} g y g

i ~

]

I

sequence machine. A machine can produce TB/day.
» Costs for Sequencing are decreasing.

WLCG: Worldwide LHC Computing Grid
The First “Small” BigData Problem

-, . L ¢ s e R - .
T .. _, *: e - -
s T : '
.“-‘ = \
. CoiD _
ATy "{ . A
. 'Q @ 1

= ™
T Y d) ‘i -
- A
N S
\ B PH

* Today >140 sites
e ~250,000 CPU cores
e ~1 Exabyte disk

2. Scale = 1,4

- -

Dobas

148.29688, 45.507T1°

AT

LAS Project: Setting the Scale

idas a s
&ydasn Completed jobs
4,000,000 - 159'WEEkS from WEEK 00 0'2&1.1 to Week 13 :7f 2014

3,500,000 f=

3,000,000 =

2,500,000 =

2,000,000 |

1,500,000 =

1,000,000 H

W BNL-ATLAS

H TRIUMF-LCG2
[SARA-MATRIX

I
1
7l
\

I e
| i i '| ik iy 1
b |||I i 'll I|||WE'| l i
il .Wn | il I| -
| 1 [[4]
il | il

[o—
o T e R (PN N R IR T I T 02020 0 mcemcems cEcEScac @O @ Es @
wn20I1 Oct20ll Feb2012 n2012 Oct2002 Feb2013 Wn2013 Oct2013 Feb20l4

I CERN-PROD WFZKLCG2 L] RAL LCGZ WINFN-TL
llllllll 1 N M NIKHEF-ELPROD
mPpiC B TAIWAN-LCG2 .RRC K Tl

wm: 3,872,310, Minimum: 0.00 , Average: 2,118,613, Ct t: 290,734

ATLAS - one of the LHC experiments responsible for discovery of Higgs
* Relies heavily on DCI for all computing needs
PANDA: WMS for ATLAS. 1.2 Exabytes processed in 2013!!
Current scale:
* 25M jobs completed every month at > O(100) sites
e ~0(10°) CPU hours a year!
Scale and complexity of computing will increase by factor of O(10)
Example of Big Data before it was “Big”!
Using RADICAL Cybertools (SAGA) to manage access to supercomputers

NCAR

Caltech

USCI/ISI
SDSC

‘ Resource Provider (RP)

‘ Software Integration Partner

* Network Hub

N

Grid Infrastructure
Group (UChicago)

Y eom

UC/ANL

UNC/RENCI

ORNL ‘

NICS

‘ LONI
TACC

Data Lifecycle and Challenges

Application-generated Data

Preparation/ Advanced
Exploration Analytics

Application, Model, Insight

(70}
(0]
O
| -
-}
o
(7))
©
=
©
®)
(7))
>
o
()
C
()
(@)}
o
S
()
+
()
I

Storage/Compute

RUTGERS

Diversity of Data-Intensive Applications [courtesy GCF]

e http://bigdatawq.nist.gov/usecases.php

e 51 Detailed Use Cases: Contributed July-September 2013
Covers goals, data features such as 3 V’'s, software, hardware

» Government Operation(4): National Archives and Records Administration, Census
Bureau

« Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web
Search, Digital Materials, Cargo shipping (as in UPS)

» Defense(3): Sensors, Image surveillance, Situation Assessment

» Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis,
Pathology, Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity

 Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter,
Crowd Sourcing, Network Science, NIST benchmark datasets

« The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light
source experiments

« Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large
Hadron Collider at CERN, Belle Accelerator Il in Japan

RUTGERS

Towards Balanced, Interoperable, Federated DCI

 What is Federation?
— Federation is the collective and concurrent utilization of DCI
* Integration and interoperability are necessary conditions

 Why Federate DCI?
— Effective application-resource mapping
» Application characteristics and sophistication increase
— Application scalability
* Peak (time) and steady-state demand, heterogeneous workload
— Resource utilization efficiency
» Exploit diversity, yet preserve specificity

e How to Federate?
— Three Architectures:
 “Grid” vs “Cloud” vs “Hybrid”
— Types and levels of Federation

RUTGERS

A Tale of Two Data-Intensive Pardigms:
Architectures, Applications and Abstractions

Collaboratinon with Geoffrey Fox
http://arxiv.org/abs/1403.1528

Data-Intensive Application Pattern (or Structure)

o Capture “essence of these use cases”.. Classify applications into patterns,
“small” kernels, mini-apps

— Focus on cases with detailed analytics
— Use for benchmarks of computers and software

 In parallel computing, this is well established
— Linpack for measuring performance to rank machines in Top500

— NAS Parallel Benchmarks (originally a pencil and paper specification to
allow optimal implementations; then MPI library)

— Other specialized Benchmark sets keep changing and used to guide
procurements

e Last 2 NSF hardware solicitations had NO preset benchmarks —
perhaps as no agreement on key applications for clouds and data
intensive applications

— Berkeley dwarfs capture different structures that any approach to parallel
computing must address

— Templates used to capture parallel computing patterns

HPC Benchmark Classics

e Linpack or HPL: Parallel LU factorization for
solution of linear equations

 NPB version 1: Mainly classic HPC solver kernels
— MG: Multigrid
— CG: Conjugate Gradient
— FT: Fast Fourier Transform
— IS: Integer sort
— EP: Embarrassingly Parallel
— BT: Block Tridiagonal
— SP: Scalar Pentadiagonal
— LU: Lower-Upper symmetric Gauss Seidel

7 Original Berkeley Dwarfs (Colella)

1. Structured Grids (including locally structured grids, e.g. Adaptive
Mesh Refinement)

Unstructured Grids
Fast Fourier Transform
Dense Linear Algebra
Sparse Linear Algebra

Particles

L A

Monte Carlo

Note “vaguer” than NPB

13 Berkeley Dwarfs

Dense Linear Algebra
Sparse Linear Algebra
Spectral Methods
N-Body Methods
Structured Grids
Unstructured Grids
MapReduce
Combinational Logic
Graph Traversal
Dynamic Programming
Backtrack and Branch-and-Bound

Graphical Models

Finite State Machines

First 6 of these correspond to Colella’s
original.

Monte Carlo dropped
N-body methods are a subset of Particle

Note a little inconsistent in that MapReduce
IS a programming model and spectral
method is a numerical method

Need multiple facets!

Distributed Computing MetaPatterns |

Jha et al, 1532-0634, 2012. DOI: 10.1002/cpe.2897CCPE

Table I. Characteristics of the set of applications arranged according to the identified vectors.

Application Communication Execution
example execution unit (data exchange) Coordination environment
Montage Multiple sequential Files Dataflow Dynamic process creation,
and parallel (DAG) workflow execution,
executables file transfer
NEKTAR Multiple concurrent Messages SPMD MPI,
instances of coscheduling
single executable
Coupled fusion Multiple concurrent Stream-based Dataflow Coscheduling,
simulation parallel executables data streaming,
async. data I/O
Asynchronous Multiple sequential Pub/sub Dataflow Decoupled coordination
replica-exchange and/or parallel and events and messaging, dynamic
executables task generation
ClimatePrediction.net Multiple sequential Files Master/ At-Home (BOINC)
(generation) executables, distributed and messages worker, events
data stores
ClimatePrediction.net A sequential executable, Files Dataflow Dynamic process
(analysis) multiple sequential or and messages (Forest) creation, workflow
or parallel executables execution
SCOOP Multiple different Files Dataflow Preemptive scheduling,
parallel executables and messages reservations

Distributed Computing MetaPatterns Il

Jha et al
Table IV. Applications and their pattern usage. A ‘-’ indicates that no pattern can be
identified, not that the application does not have any communication, coordination, or

deployment.

Application example Coordination Deployment
Montage Task farm, data processing pipeline -
NEKTAR - Co-allocation
Coupled fusion simulation Stream Co-allocation
Async RE Pub/sub Replication
ClimatePrediction (generation) Master/worker, AtHome Consensus
ClimatePrediction (analysis) MapReduce -
SCOOP Master/worker, data processing pipeline -

Distributed Computing MetaPatterns Il

Jha et al

Table V. Tools and libraries that support patterns identified in Sections 3.1
and 3.2.

Pattern Tools that support the pattern

Master/Worker—Task farm Aneka, Nimrod, Condor, Symphony, SGE, HPCS
Master/Worker—-BagOfTasks Comet-G, TaskSpace, Condor, TSpaces

All-Pairs All-Pairs

Data processing pipeline Pegasus/DAGMan

MapReduce Hadoop, Twister, Pydoop

AtHome BOINC

Pub-Sub Flaps, Meteor, Narada, Gryphon, Sienna
Stream DART, DataTurbine

Replication Giggle, Storm, BitDew, BOINC
Co-allocation HARC, GUR

Consensus BOINC, Chubby, ZooKeeper

Brokers GridBus, Condor matchmaker

Comparison of Data Analytics with Simulation -- |

e Pleasingly parallel often important in both

» Both are often SPMD and BSP

* Non-iterative I\/Iap Reduce is major big data paradigm
—not a common simulation paradigm except where “Reduce”
summarizes pleasingly parallel execution

 Big Data often has large collective communication

— Classic simulation has a lot of smallish point-to-point messages

e Simulation dominantly sparse (nearest neighbor) data

structures

— “Bag of words (users, rankings, images..)” algorithms are sparse, as is PageRank
— Important data analytics involves full matrix algorithms

Comparison of Data Analytics with Simulation - I

* There are similarities between some graph problems and particle
simulations with a strange cutoff force.

— Both Map-Communication

* Note many big data problems are “long range force” as all points are linked.
— Easiest to parallelize. Often full matrix algorithms

— e.g. in DNA sequence studies, distance (i,) defined by BLAST, Smith-
Waterman, etc., between all sequences i, |.

— Opportunity for “fast multipole” ideas in big data.
* In image-based deep learning, neural network weights are block sparse

(corresponding to links to pixel blocks) but can be formulated as full matrix
operations on GPUs and MPI in blocks.

* In HPC benchmarking, Linpack being challenged by a new sparse conjugate
gradient benchmark HPCG, while we use non- sparse conjugate gradient
solvers in clustering and Multi-dimensional scaling.

Big Data Ogres and Their “Facets”

 The first Ogre Facet captures different problem “architecture”.
Such as (i) Pleasingly Parallel — as in Blast, Protein docking, imagery (ii) Local
Machine Learning — ML or filtering pleasingly parallel as in bio-imagery, radar (iii)
Global Machine Learning seen in LDA, Clustering etc. with parallel ML over nodes of
system (iv) Fusion: Knowledge discovery often involves fusion of multiple methods.
(v) Workflow

» The second Ogre Facet captures source of data (i) SQL, (ii) NOSQL
based, (iii) Other Enterprise data systems (10 examples at NIST) (iv)Set of Files (as
managed in IRODS), (v) Internet of Things, (vi) Streaming and (vii) HPC
simulations.

» Before data gets to compute system, there is often an initial data gathering phase
which is characterized by a block size and timing. Block size varies from month
(Remote Sensing, Seismic) to day (genomic) to seconds (Real time control,
streaming)

* There are storage/compute system styles: Dedicated, Permanent, Transient

« Other characteristics are need for permanent auxiliary/comparison datasets and these
could be interdisciplinary implying nontrivial data movement/replication

Detailed Structure of Ogres

 The third Ogre Facet is distinctive system features such as (i)
Agents, as in epidemiology (swarm approaches) and (ii) GIS (Geographical
Information Systems).

 The fourth Ogre Facet captures Style of Big Data applications. (i)
Are data points in metric or non-metric spaces (ii) Maximum Likelihood, (iii) %2
minimizations, and (iv) Expectation Maximization (often Steepest descent)

* The fifth Facet is Ogres themselves classifying core analytics
kernels (i) Recommender Systems (Collaborative Filtering) (i) SVM and Linear
Classifiers (Bayes, Random Forests), (iii) Outlier Detection (IORCA) (iv) Clustering
(many methods), (v) PageRank, (vi) LDA (Latent Dirichlet Allocation), (vii) PLSI
(Probabilistic Latent Semantic Indexing), (viii) SVD (Singular Value Decomposition),
(ix) MDS (Multidimensional Scaling), (x) Graph Algorithms (seen in neural nets,
search of RDF Triple stores), (xi) Learning Neural Networks (Deep Learning), and
(xii) Global Optimization (Variational Bayes).

» Flops per byte and Communication Interconnect requirements characterize fifth facet

“Many Tasks” Pathway to Extreme Scale

* Problems in computational science naturally amenable to “task level
parallelism model of computing:
— “Embarrassingly Parallel” data-intensive applications
— Many free energy calculations, enhanced sampling problems.

— Many multi-physics simulations are also multi components.

 Single “application” might be broken into many smaller simulations

100000

e Thisis notjust HTC or HPC, but ..
complex application objectives

* Isn’t about just peak perf,
nor maximal throughput

e Given access to X cores/ 10
nodes — slice/dice or |

1 10 100 1000 10000 100000

distribute as needed T

IDEAL

1000 | —-—-—-—-

100

number of ensembles

~
~
-~
IDEAL
e
~

From Many Tasks to Complex Applications

« Starting from uncoupled heterogeneous simulations, varying levels
of coordination and dependency can be gradually added and “tuned”

— Homogeneous/Heterogeneous A
—Complexity of simulation-resources mapping D
— Coupling between simulations
— Different coordination mechanism
— Dependencies >
—Constraints, scheduling, data transfer

H

* Depending upon the above properties, the importance and
feasibility of distribution varies

Scalable Online Comparative Genomics of Mononucleosomes.

“Scalable Online Comparative Genomics of Mononucleosomes: A BigJob” , Proceedings of
Conference on XSEDE, 2013.

Ho O m—)

Wall-clock time

=
Asynchronous Replica-Exchange: Advanced Algorithms for enhanced sampling.

“A Framework for Flexible and Scalable Replica-Exchange on Production Distributed CI”, Proceedings
of Conference on XSEDE, 2013.

The Case for an Integrating Apache/Hadoop
Big Data Stack with HPC

Orchestration & Workflow Oozie, ODE, Airavata and OODT (Tools)

NA: Pegasus, Kepler, Swift, Taverna, Trident, Actme_

Cross Cutting
Capabilities
=
AN E
=1 &
= E'ﬂg
E -
2l 2
ol &
2| 8
EF
)
5-5
=
=i c
u
r
aufl i
o =
HHAHE
.ﬂ_"y§~—=
“MHE
sl &f)&
— - | S
Gy || =
HEHE
Ell-."

< N @ £ = 3 7

Data Analytics Libraries

Statistics, Bioinformatics
R, Bioconductor (NA)

Machine Learning
Mahout , MLIib , MLbase

High Level (Integrated) Systems for Data Processing

Hive Hcatalog Pig Shark MRQL Impala (NA) Swazall
(5QL on Interfaces | (Procedural {5QL on (5QL on Hadoop, (Log Files
Hadoop) Language) Spark, NA) Hama, Spark) Cloudera Google NA)

Parallel horizontally scalable Data Processing
Hadoop Spark Tez Hama | storm | 54 Samza || Giraph ;Eiis;;
(MapReduce) || (iterative MR) || (pag) (BSP) Yahoo || Linkedin|| ~Pregel (NA]
-t Batch > Stream ————» Graph

ABDS Inter-process Communication HPC Inter-process Communication

Hadoop, Spark Communications MPI(NA)

& Reductions Harp Collectives{MNA]

Pub/Sub Messaging Netty(NA)/ZeroMQ(NA)/ActiveMQ/QPi

In memory distributed databases/caches: GORA (general object from No5QL), Memcached

(NA), Redis(NA) (key value), Hazelcast (NA), Ehcache (NA);

ORM Object Relational Mapping: Hibernate(NA), OpenJPA and JDBC Standard
NoSQL: Column

HBase
(Data on
HDFS)

Solandra
(Solr+
Cassandra)
+Document

Accumulo
(Data on
HDFS)

Cassandra
(DHT)
(Watson)

Lucene Berkeley
Solr DB

Voldemort
~“Dvnamo

Dynamo
Amazon

y MongoDB CouchDB

Orchestration & Workflow Oozie, ODE, Airavata and OODT (Tools)

NA: Pegasus, Kepler, Swift, Taverna, Trident, Actlve_

larker) inf

Cross Cutting Data Analytics Libraries;
Capabilities Machine Learning Statistics, Bioinformatics
g g =| |Mahout, MLlib, MLbase (R, Bioconductor (NA)
5 mw
E" g % High Level (Integrated) Systems for Data Processing
= a Hiwve Hcatalog Pig Shark MRQL Impala (NA Swazall
o
g o (sQL on Interfaces | (Procedural (sQL on (5QL on Hadoop, {Log Files
3 E Hadoop) Languagel || Spark, NA) || Hama, Spark) Cloudera Google NA)
= |]
g‘- Parallel horizontally scalable Data Processing
Hadoop Spark Tez Hama | storm || S4 Samza || Giraph ;El_iad::sn
(MapReduce) || (iterative MR} || (pag) (BSP) Yahoo || Linkedin|| ~Pregel (A
5 5 +————— Batch - Stream ———» Graph
o e
8 - ABDS Inter-process Communication HPC Inter-process Communication
u Hadoop, Spark Communications MPI(NA)
r & Reductions Harp Collectives{NA)
ol i — Pub/Sub Messaging Netty(NA)/ZeroMQ(NA)/Active MO/ QPi
= =
AR EYE
2 vl F f In memory distributed databases/caches: GORA (general object from MoSQL), Memcached
z ﬁ § (NA), Redis{NA) (key value), Hazelcast (NA), Ehcache (NA);
- [=] B R R IR
g & - g ORM Object Relational Mapping: Hibernate(NA), OpenJPA and JDBC Standard
§ P :‘-_'Q 'E Extraction Tools | SQL SciDB NosQL: Column Solandra
Bl uUiMA Tika MysalL |Phoenix | (NA) HBase | Accumulo | cassandra [5‘7"':
i (Entities) |(content)| (NA) (saLon | Arrays, || (Dataon | (Dataon (DHT) Cassandra)
v (Watson) HBase) | R.Fythen HDFS) HDFS) +Document
2 NoSQL: Document NosSQL: Key Value (all NA)
C
v MongoDB | CouchDB § Lucene Berkeley | azyre | Dynamo Riak Voldemort
(NA) Solr DB Table Amazon | ~Dynamo | ~Dynamo
NosSQL: General Graph . File
sQ p I NosaQl: TripleStore RDF SparkQlL Management
Neo4) Yarcdata lena Sesame | AllegroGraph | RYA RDF on
Java Gnu Commercial (NA) Commercial Accumulo i
(NA) (MA)
ABDS Cluster Resource Management HPC Cluster Resource Management
.— Non Apache ABDS File Systems User Level HPC File Systems (NA)
ects HDFS, Swift, Ceph FUSE(NA) Gl
\/Iha/Fox/ Object Stores POSIX Interface
nburugamuva Interoperability Layer Whirr / JClouds occ
» 4 2014 DevOps/Cloud Deployment Puppet/Chef/Boto/C
Green
sachel laas Platform Manager Open Source Commercial Clouds Bare
loud g OpenStack, OpenNebula, Eucalyptus, CloudStack, vCloud, Amazon, Azure, Google Metal

Enhanced
Apache/Hadoop
Big Data Stack
(ABDS)

e ~120 Capabilities

e >40 Apache

e Green layers have
strong HPC Integration
opportunities

e Goal
* Functionality of ABDS
e Performance of HPC

Extraction Tools NoSQL: Column Solandra

MysQL | Phoenix HBase Cassandra (Solr+
HDFS-} +Document
NoSQL: Document NoSQL: Key Value (all NA)
MongoDB | CouchDB § Lucene Berkeley | azure | Dynamo Riak Voldemort
(MA) Solr DB Table Amazon | ~Dynamo | ~Dynamo

File

NoSQL: General Graph NosQL: TripleStore RDF SparkQL anagement

NeodJ varceats Sesame | AllegroGraph | RYA RDF on
lava Gnu Commercial (NA) Commercial Accumulo
(NA) (NA)
ABDS Cluster Resource Management HPC Cluster Resource Management
ABDS File Systems User Level HPC File Systems (NA)

HDFS, Swift, Ceph FUSE(MNA)
Object Stores POSIX Interface

Interoperability Layer Whirr / JClouds
DevOps/Cloud Deployment Puppet/Chef/Boto/C

laas Platform Manager Open Source Commercial Clouds
OpenStack, OpenNebula, Eucalyptus, CloudStack, vCloud, Amazon, Azure, Google

RUTGERS

Bringing High Performance to Data Analytics

e On the systems side, we have two principles

—The Apache Big Data Stack with ~120 projects has important
broad functionality with a vital large support organization

—HPC including MPI has striking success in delivering high
performance with however a fragile sustainability model
* There are key systems abstractions which are levels in HPC-
ABDS software stack where careful integration needed
— Resource management
— Resource Fabric: Storage and Compute
— Programming model -- horizontal scaling parallelism
— Collective and Point to Point communication

— Support of iteration

Applications

Applications

Orchestration
(Pegasus, Taverna, Dryad, Swift)

Orchestration (Oozie, Pig)

Advanced Analytics & Machine Learning

MPI Frameworks for (Pilot-KMeans, Replica Exchange)

Advanced Analytics & Machine Learning (Mahout, R, MLBase) Data Processing

Advanced Analytics &
Machine Learning

MapReduce Declarative
g?ns" I_Se C;IFIAE':%};’ Frameworks Languages
o0, * || (Pilot-MapReduce) (Swift)

Blast)

Workload Management
(Pilots, Condor)

Analytics,

SQL-Engines (Impala, Hive, Shark, Phoenix) Orchestration

In-Memory MapReduce Twister
Higher-Level D;?czgriﬁ g& (Spark) MapReduce
Workload
HBase i X
Management () B Map Taotar ngher.LeveI
(TEZ, LLama) Reduce Schedul Runtime
2 |Scheduler Scheduler Scheduler eduler Environment

MPI, RDMA

Data Access
(Virtual Filesystem,
GridFTP, SSH)

Storage Management
(iRODS, SRM, GFFS)

Storage Resources
(Lustre, GPFS)

Cluster Resource Manager

(Slurm, Torque, SGE)

Compute Resources
(Nodes, Cores, VMs)

High-Performance Computing

RUTGERS

Hadoop Shuffle/Reduction, HARP Collectives Communication

Cluster Resource Manager Resource
(YARN, Mesos) Management
Compute and Data Resources Resource
(Nodes, Cores, HDFS) Fabric

Apache Hadoop Big Data

Applications (Big Data Ogres)

Orchestration

(High-level Workflow Mechanisms, Oozie, Pig)

Analytics Libraries (ScalLAPACK, PetSc, Mahout, R, MLEase)

MPI
Frameworks
(Blas)

Declarative
Languages
(Swift)

SQL-Engines
{Impala, Hive,
Shark,
Phoenix)

Data
processing
(HBase)

In-Memaory
(Spark)

Twister
MapReduce

MPI, RDMA, Hadoop Shufile/Reduction, HEASE, SAL, HARFP Collectives

Higher-Level Warkload
Management
(TEZ, LLama)

Wiorkload Management
(Pilots, Condor)

Framework specific Scheduler
(e.g. Spark, MR, Twister)

(Virtual File

Data Access

system, GridFTP, SRM, SSH)

RUTGERS

Cluster Resource Manager

(YARN, Mesos, SLURM, Torque, SGE)

Applications
and
Orchestration

Data
Processing,
Analytics

Data and
Communication

Higher-
Level
Scheduling
Task
Execution

Resource
Management

Resource
Fabric

L

i it

Community
and
Exemplars

Analytics
Libraries
{SPIDAL)

Middleware
{MIDAS)

Integrating Hadoop/Yarn with HPC

|
|
Map Other l
HPC Apps
Reduce YARN App E PP Application-level
' Scheduling
|
YARN : MPI Pilots
|
'*
HPC Scheduler (Slurm, : VARN System-level
Torque, SGE) ! Scheduling
|
|
YARN on HPC : HPC on YARN

4 Forms of MapReduce

(b) Classic (c) Ilterative (d) Loosely
(a) Map Only svnch
MapReduce MapReduce ynchronous
— Input Input Iterations
1™ L) | e /])
map
| | me | -
P..)
< |
)
l l l reduce \
reduce
Output N
BLAST Analysis High Energy Physics Expectation maximization Classic MPI

Parametric sweep

Pleasingly Parallel

(HEP) Histograms

Distributed search

Clustering e.g. Kmeans

Linear Algebra, Page Rank

PDE Solvers and

particle dynamics

4—

Domain of MapReduce and Iterative Extensions

Science Clouds

—®

MPI
Giraph

MPI is Map followed by Point to Point or Collective Communication

— as in style c) plus d) [slide courtesy Geoffrey Fox]

Increasing Communication

10000+

TN

0.1+

1000

100

10

Identical Computation
<

1000000 points 10000000 points 100000000 points
50000 centroids 5000 centroids 500 centroids

(08s un)
awi|

Aousio
-3

24 48 96 24 48 96 24 48 96

Number of Cores
B Hadoop MR M Mahout B Python Scripting B Spark M Harp & MPI

Mahout and Hadoop MR — Slow due to MapReduce
Python slow as Scripting; MPI fastest

Spark Iterative MapReduce, non optimal communication
Harp Hadoop plug in with ~MPI collectives

RADICAL-Cybertools: Usage, Usage Modes
and Applications

http://radical-cybertools.github.io/

Pilot Abstractions

Working definition: A system that generalizes a placeholder job to provide
multi-level scheduling to allow application-level control over the system

scheduler via a scheduling overlay.

s % User Application Pilot-Job System
(7)) ..
2 Pilot-Job| Pilot-Job| |~ OlCeS
Resource Manaoger
5 3
o 38
N 0p)]
Resource A Resource B Resource C Resource D

Introduction to Pilot-Abstraction (2)

* Working definitions:

— A system that generalizes a placeholder job to provide multi-level
scheduling to allow application-level control over the system scheduler
via a scheduling overlay

— “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

» Advantages of Pilot-Abstractions:
— The Perfect Pilot: Decouples workload from resource management
— Flexible Resource Management
 Enables the fine-grained (ie “slicing and dicing”) of resources

» Tighter temporal control and other advantages of application-level
Scheduling (avoid limitations of system-level only scheduling)

— Move control, extensibility and flexibility “upwards”
 Build higher-level capabilities without explicit resource management

Landscape of Pilot-Job Systems

There are many PJS offerings, often semantically distinct
— PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob...
« Why do you think there has been a proliferation of PJs?

Conceptual & practical barriers to extensibility (& interoperability)

— The landscape of PJS reflects, in addition to PJS specifics, the broader eco-
system of distributed middleware & infrastructure

— Software Engineering issues, interfaces, standardization

Difference in the execution models of the PJ
— We know “what” pilot-jobs do, but the “how” remains less clear
* How to map tasks to pilot-jobs? How to choose/map optimal resource?
» How to “slice and dice” resources?

Data remains a dependent variable, not a primary variable

RU’I GEKS

P* Model: Elements, Characteristics and APl

| 1) submit pilot
* Elements: Application destiption Pilot-Manager
— Pilot-Compute (PC). = QY SugmIECY
— Pilot-Data (PD). 2] submit pilot
I a Resourc
- Compute Unit (CU)- Resource Manager iR
— Data Unit (DU) 3) stall't pilot 5) schedule SU to pilot

— Scheduling Unit (SU).
— Pilot-Manager (PM).

e Characteristics:
— Coordination.
— Communication.
— Scheduling.

Application

* Pilot-APL. I

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012

RADICAL-PIlot (BigJob): Architecture

Pilot-API
1) create pilot 5 b q
N — 0 : istribute
Application : Pilot- CR
PP 2) submit du/cu Manager Cog(red r:,ri\?gon
User Desktop
Resource
\
Resource Manager
Y
Pilot-Agent
T e . T e | i o e i v
| Data Unit i ; Compute Unit i | Compute Unit i
! ! p ! |
L | v Ap | L | App | |
1 B i Kernel ! i Kernel !
! | I |
|) ! ;!

, [l BigJob
[] Application

S e N i i, M T e e B e e - W e i i e i i g

Resource

“Coarse-Grained” RADICAL-Pilot Performance

Number of zero-payload tasks that BJ can dispatch per second:
— Distributed: O(1)
— Locally: > O(10)

Number of Pilots (Pilot-Agents) that can be marshaled
— Locally/Distributed: O(100)

Typical number of tasks per Pilot-Agent:
— Locally/distributed: O(1000)

Number of tasks concurrently managed = Number of Pilot-Agents x
tasks per each agent :

— O(100) x O(1000)

(Obviously) The above depends upon data per task:

— BigJob has been used over O(1)--O(10°) bytes/task, for tasks
of duration O(1) second to O(10°) seconds

RAD|CAL-PI|Ot http://radical-cybertools.github.io/radical-pilot

*Simple [I] Application Layer
Scripting” Services
QOO 10O O Jobs
Infrastructure Access
& Abstraction Layer

Round-Robin

Infrastructure Layer

HPC Cluster HPC Cluster HPC Cluster

RADICAL-PIlot

http://radical-cybertools.qgithub.io/radical-pilot

« Lightweight, portable, fast, scalable pilot framework

» Scalability (up and out)
— Lightweight data model
— Bulk operations
— Notifications / support for async programming

» Portability
— Pure Python
— Modular pilot agent
— SAGA-Python as plumbing layer

e Supports Research
— Pluggable schedulers
— High degree of introspection, provenance
— Consistent and verifiable performance

SAGA: A Standardized Interoperability Layer

e SAGA - Simple API for Distributed (“Grid”) Applications:

— Allows access to different middleware / services through Python implementation of
Open Grid Forum GFD.90.

— Also unified semantics across middleware, backend plug-ins (“adaptors”).

« HOW SAGA is Used?
— Uniform Access-layer to DCI, e.g, XSEDE,
— Build tools, middleware services and capabilities
» Pilot-Jobs, workflow systems, science gateways and web portals
— Domain-specific (distributed) applications, libraries and frameworks

» Functional component as well as a specific component XSEDE Architecture

XSEDE Weekly Hours by User
\ 2,660,000 116 Weeks from Week 49 of 2011 to Week 08 of 2014

SAGA: Interoperability Layer for RP

e SAGA — Simple API for Distributed (“Grid”) Applications:
— Application level standardized (Open Grid Forum GFD.90) API.

— Application is a broad term: “one person’ s application is another person’s
tool (building block)”.

 SAGA-Python:
— Native Python implementation of Open Grid Forum GFD.90.
— Allows access to different middleware / services through a unified interface
— Provides access via different backend plug-ins (“adaptors™).

— SAGA-Python provides both a common API, but also unified semantics
across heterogeneous middleware:

 Transparent Remote operations (SSH / GSISSH tunneling).
» Asynchronous operations.

o Callbacks.

e Error Handling.

SAGA Schematic

Conclusion

« A fundamental need for abstractions to support diverse set of data-
Intensive applications

— Need for a balanced, interoperable and federated data ClI

e Towards High-performance Data-Intensive Computing
— Best of both: Hadoop/Apache Big Data stack meets HPC

 Set against these objectives: “Pilot Abstraction Works!”
— Better integration into HPC

» Platform independent libraries: different application types,
execution modes, coupling schemes

— Similar “abstractions” emerging in the Hadoop BDS

References

RADICAL-Cybetools:
— http://radical-cybertools.github.com/

RADICAL-SAGA:

— http://saga-project.github.io/radical-saga
RADICAL-Pilot: An implementation of P*

— http://saga-project.github.io/radical-pilot/
RADICAL.:

— http://radical.rutgers.edu/

Publications:
— http://radical.rutgers/edu/publications

Acknowledgements

Graduate Students:

e Mark Santcroos

* Antons Trekalis

* Vivek Balasubramanian
Research Scientists:

* Andre Luckow

* Andre Merzky

« Matteo Turilli

* Ole Weidner
Collaborators

» Geoffrey Fox, Judy Qiu

