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Outline: Part I (Lecture) 
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•  A broad perspective on data-intensive science 
–  Rich and diverse landscape of data-intensive architectures, applications and 

software systems 
–  Need for Balanced, Interoperable and Federated CI 

•  Architectures for data-intensive applications 
•  HPC vs Grids vs Clouds?  

•  A Tale of Two Data Intensive Paradigms 
–  BigData Ogres (mini-app, macro/micro patterns, skeleton) 

•  Variations of “task level” parallelism and variants, Kmeans 
–  HPC vs Hadoop/Apache Big Data stack (ABDS) 

•  Convergence? Consilience between HPC and Apache/Hadoop? 

•  Introduction to RADICAL-Cybertools 
–  Abstractions-based tools for interoperable extensible “task-level parallelism” 
 



Outline: Part II (Hands On) 
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•  RADICAL Cybertools: 
–  RADICAL-SAGA Interoperability Layer  

•  Basics 
•  Tutorial 
•  Side detour: SAGA-Hadoop 

–  RADICAL-Pilot  
•  Basics 
•  Tutorial 

–  Kmeans redux 
•  Multiple Kmeans concurrently 
•  Trade-off: number vs size 
•  Kmeans Map Reduce 



Exponential Growth of High-end Computing 

HW: Think about the implications of this  graph. 



Compute & Data: Two sides of the same coin 
An Interesting Observation 
 

HW: Think about the implications of this  graph. 



Data-intensive Sciences 

High Energy Physics: 
•  LHC at CERN produces petabytes of data per day. 
•  Data is processed and distributed across Tier 1 and 2 sites. 

Astronomy: 
•  Sloan Digital Sky Survey (80 TB over 7 years). 
•  LSST will produce 40 TB per day (for 10 years). 

 

Geonomics: 
•  Data volume increasing with every new generation of 

sequence machine. A machine can produce TB/day. 
•  Costs for Sequencing are decreasing. 
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WLCG: Worldwide LHC Computing Grid  

The First “Small” BigData Problem 
 

•  Today >140 sites 
•  ~250k CPU cores 
•  ~100 PB disk 

•  Today >140 sites 
•  ~250,000 CPU cores 
•  ~1 Exabyte disk 



ATLAS Project: Setting the Scale 

•  ATLAS – one of the LHC experiments responsible for discovery of Higgs 
•  Relies heavily on DCI for all computing needs 

•  PANDA: WMS for ATLAS. 1.2 Exabytes processed in 2013!! 
•  Current scale: 

•  25M jobs completed every month at > O(100) sites 
•  ~O(109) CPU hours a  year! 

•  Scale and complexity of computing will increase by factor of O(10) 
•  Example of Big Data before it was “Big”!  
•  Using RADICAL Cybertools (SAGA) to manage access to supercomputers 
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Data Lifecycle and Challenges 
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Diversity of Data-Intensive Applications [courtesy GCF]  
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•  http://bigdatawg.nist.gov/usecases.php         

•  51 Detailed Use Cases: Contributed July-September 2013 
Covers goals, data features such as 3 V’s, software, hardware 

•  Government Operation(4): National Archives and Records Administration, Census 
Bureau 

•  Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web 
Search, Digital Materials, Cargo shipping (as in UPS) 

•  Defense(3): Sensors, Image surveillance, Situation Assessment 

•  Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis, 
Pathology, Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity 

•  Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter, 
Crowd Sourcing, Network Science, NIST benchmark datasets 

•  The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light 
source experiments 

•  Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large 
Hadron Collider at CERN, Belle Accelerator II in Japan 



Towards Balanced, Interoperable, Federated DCI 
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•  What is Federation? 
–  Federation is the collective and concurrent utilization of DCI  

•  Integration and interoperability are necessary conditions 

•  Why Federate DCI? 
–  Effective application-resource mapping 

•  Application characteristics and sophistication increase 
–  Application scalability  

•  Peak (time) and steady-state demand, heterogeneous workload 
–  Resource utilization efficiency 

•  Exploit diversity, yet preserve specificity 

•  How to Federate? 
–  Three Architectures:  

•  “Grid” vs “Cloud” vs “Hybrid” 
–  Types and levels of Federation 

 



A Tale of Two Data-Intensive Pardigms: 
Architectures, Applications and Abstractions 
 
Collaboratinon with Geoffrey Fox http://arxiv.org/abs/1403.1528 



Data-Intensive Application Pattern (or Structure) 

•  Capture “essence of these use cases”.. Classify applications into patterns, 
“small” kernels, mini-apps 

–  Focus on cases with detailed analytics 
–  Use for benchmarks of computers and software 

•  In parallel computing, this is well established 
–  Linpack for measuring performance to rank machines in Top500  
–  NAS Parallel Benchmarks (originally a pencil and paper specification to 

allow optimal implementations; then MPI library) 
–  Other specialized Benchmark sets keep changing and used to guide 

procurements 
•  Last 2 NSF hardware solicitations had NO preset benchmarks – 

perhaps as no agreement on key applications for clouds and data 
intensive applications 

–  Berkeley dwarfs capture different structures that any approach to parallel 
computing must address 

–  Templates used to capture parallel computing patterns 



HPC Benchmark Classics 

• Linpack or HPL: Parallel LU factorization for 
solution of linear equations 

• NPB version 1: Mainly classic HPC solver kernels 
–  MG: Multigrid 
–  CG: Conjugate Gradient 
–  FT: Fast Fourier Transform 
–  IS: Integer sort 
–  EP: Embarrassingly Parallel 
–  BT: Block Tridiagonal 
–  SP: Scalar Pentadiagonal 
–   LU: Lower-Upper symmetric Gauss Seidel 
 



7 Original Berkeley Dwarfs (Colella) 
1.  Structured Grids (including locally structured grids, e.g. Adaptive 

Mesh Refinement) 

2.  Unstructured Grids 

3.  Fast Fourier Transform 

4.  Dense Linear Algebra 

5.  Sparse Linear Algebra  

6.  Particles 

7.  Monte Carlo 

Note “vaguer” than NPB 



13 Berkeley Dwarfs 
•  Dense Linear Algebra  

•  Sparse Linear Algebra 

•  Spectral Methods 

•  N-Body Methods 

•  Structured Grids 

•  Unstructured Grids 

•  MapReduce 

•  Combinational Logic 

•  Graph Traversal 

•  Dynamic Programming 

•  Backtrack and Branch-and-Bound 

•  Graphical Models 

•  Finite State Machines 

First 6 of these correspond to Colella’s 
original.  
 
Monte Carlo dropped 
N-body methods are a subset of Particle 
 
Note a little inconsistent in that MapReduce 
is a programming model and spectral 
method is a numerical method  
 
Need multiple facets! 



Distributed Computing MetaPatterns I 
Jha et al, 1532-0634, 2012. DOI: 10.1002/cpe.2897CCPE  



Distributed Computing MetaPatterns II 
Jha et al 



Distributed Computing MetaPatterns III 
Jha et al 



Comparison of Data Analytics with Simulation -- I 

• Pleasingly parallel often important in both 
• Both are often SPMD and BSP 
•  Non-iterative MapReduce is major big data paradigm 

– not a common simulation paradigm except where “Reduce” 
summarizes pleasingly parallel execution 

• Big Data often has large collective communication 
–  Classic simulation has a lot of smallish point-to-point messages 

• Simulation dominantly sparse (nearest neighbor) data 
structures 

–  “Bag of words (users, rankings, images..)” algorithms are sparse, as is PageRank  
–  Important data analytics involves full matrix algorithms 
 



Comparison of Data Analytics with Simulation - II 
•  There are similarities between some graph problems and particle 

simulations with a strange cutoff force. 
– Both Map-Communication 

•  Note many big data problems are “long range force” as all points are linked. 
– Easiest to parallelize. Often full matrix algorithms 
–  e.g. in DNA sequence studies, distance δ(i, j) defined by BLAST, Smith-

Waterman, etc., between all sequences i, j. 
– Opportunity for “fast multipole” ideas in big data. 

•  In image-based deep learning, neural network weights are block sparse 
(corresponding to links to pixel blocks) but can be formulated as full matrix 
operations on GPUs and MPI in blocks. 

•  In HPC benchmarking, Linpack being challenged by a new sparse conjugate 
gradient benchmark HPCG, while we use non- sparse conjugate gradient 
solvers in clustering and Multi-dimensional scaling. 



Big Data Ogres and Their “Facets” 
•  The first Ogre Facet captures different problem “architecture”. 

Such as (i) Pleasingly Parallel – as in Blast, Protein docking, imagery (ii) Local 
Machine Learning – ML or filtering pleasingly parallel as in bio-imagery, radar (iii) 
Global Machine Learning seen in LDA, Clustering etc. with parallel ML over nodes of 
system (iv) Fusion: Knowledge discovery often involves fusion of multiple methods. 
(v) Workflow 

•  The second Ogre Facet captures source of data (i) SQL, (ii) NOSQL 
based, (iii) Other Enterprise data systems (10 examples at NIST) (iv)Set of Files (as 
managed in iRODS), (v) Internet of Things, (vi) Streaming and (vii) HPC 
simulations.  

•  Before data gets to compute system, there is often an initial data gathering phase 
which is characterized by a block size and timing. Block size varies from month 
(Remote Sensing, Seismic) to day (genomic) to seconds (Real time control, 
streaming) 

•  There are storage/compute system styles: Dedicated, Permanent, Transient 

•  Other characteristics are need for permanent auxiliary/comparison datasets and these 
could be interdisciplinary implying nontrivial data movement/replication 



Detailed Structure of Ogres 

•  The third Ogre Facet is distinctive system features such as  (i) 
Agents, as in epidemiology (swarm approaches) and (ii) GIS (Geographical 
Information Systems). 

•  The fourth Ogre Facet captures Style of Big Data applications. (i) 
Are data points in metric or non-metric spaces (ii) Maximum Likelihood, (iii) χ2 
minimizations, and (iv) Expectation Maximization (often Steepest descent) 

•  The fifth Facet is Ogres themselves classifying core analytics 
kernels (i) Recommender Systems (Collaborative Filtering) (ii) SVM and Linear 
Classifiers (Bayes, Random Forests), (iii) Outlier Detection (iORCA) (iv) Clustering 
(many methods), (v) PageRank, (vi) LDA (Latent Dirichlet Allocation), (vii) PLSI 
(Probabilistic Latent Semantic Indexing), (viii) SVD (Singular Value Decomposition), 
(ix) MDS (Multidimensional Scaling), (x) Graph Algorithms (seen in neural nets, 
search of RDF Triple stores), (xi) Learning Neural Networks (Deep Learning), and 
(xii) Global Optimization (Variational Bayes). 

•  Flops per byte and Communication Interconnect requirements characterize fifth facet 



“Many Tasks” Pathway to Extreme Scale 

•  Problems in computational science naturally amenable to “task level” 
parallelism model of computing: 

–  “Embarrassingly Parallel” data-intensive applications 
– Many free energy calculations, enhanced sampling problems. 
– Many multi-physics simulations are also multi components. 

•  Single application might be  broken into many smaller simulations 

•  This is not just HTC or HPC, but 
complex application objectives 
•  Isn’t about just peak perf, 

nor maximal throughput 
•  Given access to X cores/

nodes – slice/dice or 
distribute as needed  

yyy



From Many Tasks to Complex Applications  

•  Starting from uncoupled heterogeneous simulations, varying levels 
of coordination and dependency can be gradually added and “tuned” 
– Homogeneous/Heterogeneous 

– Complexity of simulation-resources mapping  
– Coupling between simulations  

– Different coordination mechanism 
– Dependencies 

– Constraints, scheduling, data transfer 

 
 

•  Depending upon the above properties, the importance and 
feasibility of distribution varies 
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Scalable Online Comparative Genomics of Mononucleosomes. 
“Scalable Online Comparative Genomics of Mononucleosomes: A BigJob” , Proceedings of 
Conference on XSEDE, 2013.  

Asynchronous Replica-Exchange: Advanced Algorithms for enhanced sampling. 
“A Framework for Flexible and Scalable Replica-Exchange on Production Distributed CI”, Proceedings 
of Conference on XSEDE, 2013. 



The Case for an Integrating Apache/Hadoop 
Big Data Stack with HPC 





Enhanced 
Apache/Hadoop 
Big Data Stack 
(ABDS) 

• 
• 
• 

• 
• 
• 





Bringing High Performance to Data Analytics 

•  On the systems side, we have two principles 
– The Apache Big Data Stack with ~120 projects has important 

broad functionality with a vital large support organization 
– HPC including MPI has striking success in delivering high 

performance with however a fragile sustainability model 

•  There are key systems abstractions which are levels in HPC-
ABDS software stack where careful integration needed 

– Resource management 
– Resource Fabric: Storage and Compute  
– Programming model -- horizontal scaling parallelism 
– Collective and Point to Point communication 
– Support of iteration 
– Data interface (not just key-value) 
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Integrating Hadoop/Yarn with HPC 
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YARN on HPC HPC on YARN

System-level 
Scheduling

Application-level 
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HPC Apps



4 Forms of MapReduce 
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Mahout and Hadoop MR – Slow due to MapReduce 
Python slow as Scripting; MPI fastest  
Spark Iterative MapReduce, non optimal communication 
Harp Hadoop plug in with ~MPI collectives  
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RADICAL-Cybertools: Usage, Usage Modes 
and Applications 
 
http://radical-cybertools.github.io/ 



Pilot Abstractions 

Working definition: A system that generalizes a placeholder job to provide 
multi-level scheduling to allow application-level control over the system 
scheduler via a scheduling overlay. 
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Introduction to Pilot-Abstraction (2) 
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•  Working definitions:  
–  A system that generalizes a placeholder job to provide multi-level 

scheduling to allow application-level control over the system scheduler 
via a scheduling overlay 

–  .. defined as an abstraction that generalizes the reoccurring concept of 
utilizing a placeholder job as a container for a set of compute tasks; an 
instance of that placeholder job is referred to as Pilot-Job or pilot.  

•  Advantages of Pilot-Abstractions: 
–  The Perfect Pilot: Decouples workload from resource management 
–  Flexible Resource Management 

•  Enables the fine-grained (ie slicing and dicing ) of resources  
•  Tighter temporal control and other advantages of application-level 

Scheduling (avoid limitations of system-level only scheduling) 
–  Move control, extensibility and flexibility upwards  

•  Build higher-level capabilities without explicit resource management  



 
Landscape of Pilot-Job Systems 
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•  There are many PJS offerings, often semantically distinct  
–  PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob… 

•  Why do you think there has been a proliferation of PJs? 

•  Conceptual & practical barriers to extensibility (& interoperability) 
–  The landscape of PJS reflects, in addition to PJS specifics, the broader eco-

system of distributed middleware & infrastructure 
–  Software Engineering issues, interfaces, standardization 

•  Difference in the execution models of the PJ 
–  We know what  pilot-jobs do, but the how  remains less clear 

•  How to map tasks to pilot-jobs? How to choose/map optimal resource? 
•  How to slice and dice  resources?  

•  Data remains a dependent variable, not a primary variable 
–  Introduce the concept of Pilot-data  



P* Model: Elements, Characteristics and API 

•  Elements: 
–  Pilot-Compute (PC). 
–  Pilot-Data (PD). 
–  Compute Unit (CU). 
–  Data Unit (DU). 
–  Scheduling Unit (SU). 
–  Pilot-Manager (PM). 

•  Characteristics: 
–  Coordination. 
–  Communication. 
–  Scheduling. 

•  Pilot-API. 

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012 



RADICAL-Pilot (BigJob): Architecture 



Coarse-Grained RADICAL-Pilot Performance 

•  Number of zero-payload tasks that BJ can dispatch per second: 
– Distributed: O(1) 
–  Locally: > O(10) 

•  Number of Pilots (Pilot-Agents) that can be marshaled 
–  Locally/Distributed: O(100) 

•  Typical number of tasks per Pilot-Agent: 
–  Locally/distributed: O(1000) 

•  Number of tasks concurrently managed = Number of Pilot-Agents x 
tasks per each agent : 

– O(100) x O(1000) 

•  (Obviously) The above depends upon data per task:  
–   BigJob has been used over O(1)--O(109) bytes/task, for tasks 

of duration O(1) second to O(105) seconds 



RADICAL-Pilot http://radical-cybertools.github.io/radical-pilot 



RADICAL-Pilot  
http://radical-cybertools.github.io/radical-pilot 

•  Lightweight, portable, fast, scalable pilot framework  

•  Scalability (up and out) 
–  Lightweight data model  
–  Bulk operations  
–  Notifications / support for async programming  

•  Portability  
–  Pure Python  
–  Modular pilot agent  
–  SAGA-Python as plumbing layer  

•  Supports Research 
–  Pluggable schedulers  
–  High degree of introspection, provenance  
–  Consistent and verifiable performance 



SAGA: A Standardized Interoperability Layer 
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•  SAGA – Simple API for Distributed ( Grid ) Applications: 
–  Allows access to different middleware / services through Python implementation of 

Open Grid Forum GFD.90. 
–  Also unified semantics across middleware, backend plug-ins ( adaptors ). 

•  HOW SAGA is Used? 
–  Uniform Access-layer to DCI, e.g, XSEDE,  
–  Build tools, middleware services and capabilities 

•  Pilot-Jobs, workflow systems, science gateways and web portals  
–  Domain-specific (distributed) applications, libraries and frameworks 

•  Functional component as well as a specific component XSEDE Architecture   



SAGA: Interoperability Layer for RP 

•  SAGA – Simple API for Distributed ( Grid ) Applications: 
–  Application level standardized (Open Grid Forum GFD.90) API. 
–  Application is a broad term: one person s application is another person s 

tool (building block) .  

•  SAGA-Python: 
–  Native Python implementation of Open Grid Forum GFD.90. 
–  Allows access to different middleware / services through a unified interface  
–  Provides access via different backend plug-ins ( adaptors ). 
–  SAGA-Python provides both a common API, but also unified semantics 

across heterogeneous middleware: 
•  Transparent Remote operations (SSH / GSISSH tunneling). 
•  Asynchronous operations. 
•  Callbacks. 
•  Error Handling. 



SAGA Schematic 



Conclusion 

•  A fundamental need for abstractions to support diverse set of data-
intensive applications 

– Need for a balanced, interoperable and federated data CI 

•  Towards High-performance Data-Intensive Computing 
–  Best of both: Hadoop/Apache Big Data stack meets HPC 

•  Set against these objectives: Pilot Abstraction Works!  
– Better integration into HPC  

•  Platform independent libraries: different application types, 
execution modes, coupling schemes 

– Similar “abstractions” emerging in the Hadoop BDS 
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