
RADICAL-Cybertools: Abstractions-based Tools
for Large-Scale Data-Intensive Applications

Shantenu Jha,
http://radical.rutgers.edu

Outline: Part I (Lecture)

2

•  A broad perspective on data-intensive science
–  Rich and diverse landscape of data-intensive architectures, applications and

software systems
–  Need for Balanced, Interoperable and Federated CI

•  Architectures for data-intensive applications
•  HPC vs Grids vs Clouds?

•  A Tale of Two Data Intensive Paradigms
–  BigData Ogres (mini-app, macro/micro patterns, skeleton)

•  Variations of “task level” parallelism and variants, Kmeans
–  HPC vs Hadoop/Apache Big Data stack (ABDS)

•  Convergence? Consilience between HPC and Apache/Hadoop?

•  Introduction to RADICAL-Cybertools
–  Abstractions-based tools for interoperable extensible “task-level parallelism”

Outline: Part II (Hands On)

3

•  RADICAL Cybertools:
–  RADICAL-SAGA Interoperability Layer

•  Basics
•  Tutorial
•  Side detour: SAGA-Hadoop

–  RADICAL-Pilot
•  Basics
•  Tutorial

–  Kmeans redux
•  Multiple Kmeans concurrently
•  Trade-off: number vs size
•  Kmeans Map Reduce

Exponential Growth of High-end Computing

HW: Think about the implications of this graph.

Compute & Data: Two sides of the same coin
An Interesting Observation

HW: Think about the implications of this graph.

Data-intensive Sciences

High Energy Physics:
•  LHC at CERN produces petabytes of data per day.
•  Data is processed and distributed across Tier 1 and 2 sites.

Astronomy:
•  Sloan Digital Sky Survey (80 TB over 7 years).
•  LSST will produce 40 TB per day (for 10 years).

Geonomics:
•  Data volume increasing with every new generation of

sequence machine. A machine can produce TB/day.
•  Costs for Sequencing are decreasing.

6

7

WLCG: Worldwide LHC Computing Grid

The First “Small” BigData Problem

•  Today >140 sites
•  ~250k CPU cores
•  ~100 PB disk

•  Today >140 sites
•  ~250,000 CPU cores
•  ~1 Exabyte disk

ATLAS Project: Setting the Scale

•  ATLAS – one of the LHC experiments responsible for discovery of Higgs
•  Relies heavily on DCI for all computing needs

•  PANDA: WMS for ATLAS. 1.2 Exabytes processed in 2013!!
•  Current scale:

•  25M jobs completed every month at > O(100) sites
•  ~O(109) CPU hours a year!

•  Scale and complexity of computing will increase by factor of O(10)
•  Example of Big Data before it was “Big”!
•  Using RADICAL Cybertools (SAGA) to manage access to supercomputers

SDSC

TACC

UC/ANL

NCSA

ORNL

PU

IU

PSC

NCAR PPPPP

DDSSSSSSSSCCCCCCCC

CSSSSSSSSAAAAAAAAAAAAAAAAAA
U

T

NNNNNNNC
L

Caltech

USC/ISI

UNC/RENCI

UW

Resource Provider (RP)

Software Integration Partner

Grid Infrastructure
Group (UChicago)

L
NICS

LONI

Network Hub

Data Lifecycle and Challenges

Ingest

H
et

er
og

en
eo

us
 d

at
a

so
ur

ce
s

Storage/Compute

Preparation/
Exploration

Advanced
Analytics

torage

ation

A
pp

lic
at

io
n,

 M
od

el
, I

ns
ig

ht

ytics

Write I/O
Bound
Scale-out for
high data rates

Application-generated Data

Read I/O Bound
Scale-out for
higher aggregate
I/O

Compute/Memory
Bound
Scale-out for higher
aggregate I/O

Write I/O
Bound
Scale-out for
high data rates

Read I/O Bound
Scale-out for
higher aggregate
I/O

Compute/Memory
Bound
Scale-out for higher
aggregate I/O

Resource Requirements

Diversity of Data-Intensive Applications [courtesy GCF]

11

•  http://bigdatawg.nist.gov/usecases.php

•  51 Detailed Use Cases: Contributed July-September 2013
Covers goals, data features such as 3 V’s, software, hardware

•  Government Operation(4): National Archives and Records Administration, Census
Bureau

•  Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web
Search, Digital Materials, Cargo shipping (as in UPS)

•  Defense(3): Sensors, Image surveillance, Situation Assessment

•  Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis,
Pathology, Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity

•  Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter,
Crowd Sourcing, Network Science, NIST benchmark datasets

•  The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light
source experiments

•  Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large
Hadron Collider at CERN, Belle Accelerator II in Japan

Towards Balanced, Interoperable, Federated DCI

12

•  What is Federation?
–  Federation is the collective and concurrent utilization of DCI

•  Integration and interoperability are necessary conditions

•  Why Federate DCI?
–  Effective application-resource mapping

•  Application characteristics and sophistication increase
–  Application scalability

•  Peak (time) and steady-state demand, heterogeneous workload
–  Resource utilization efficiency

•  Exploit diversity, yet preserve specificity

•  How to Federate?
–  Three Architectures:

•  “Grid” vs “Cloud” vs “Hybrid”
–  Types and levels of Federation

A Tale of Two Data-Intensive Pardigms:
Architectures, Applications and Abstractions

Collaboratinon with Geoffrey Fox http://arxiv.org/abs/1403.1528

Data-Intensive Application Pattern (or Structure)

•  Capture “essence of these use cases”.. Classify applications into patterns,
“small” kernels, mini-apps

–  Focus on cases with detailed analytics
–  Use for benchmarks of computers and software

•  In parallel computing, this is well established
–  Linpack for measuring performance to rank machines in Top500
–  NAS Parallel Benchmarks (originally a pencil and paper specification to

allow optimal implementations; then MPI library)
–  Other specialized Benchmark sets keep changing and used to guide

procurements
•  Last 2 NSF hardware solicitations had NO preset benchmarks –

perhaps as no agreement on key applications for clouds and data
intensive applications

–  Berkeley dwarfs capture different structures that any approach to parallel
computing must address

–  Templates used to capture parallel computing patterns

HPC Benchmark Classics

• Linpack or HPL: Parallel LU factorization for
solution of linear equations

• NPB version 1: Mainly classic HPC solver kernels
–  MG: Multigrid
–  CG: Conjugate Gradient
–  FT: Fast Fourier Transform
–  IS: Integer sort
–  EP: Embarrassingly Parallel
–  BT: Block Tridiagonal
–  SP: Scalar Pentadiagonal
–  LU: Lower-Upper symmetric Gauss Seidel

7 Original Berkeley Dwarfs (Colella)
1.  Structured Grids (including locally structured grids, e.g. Adaptive

Mesh Refinement)

2.  Unstructured Grids

3.  Fast Fourier Transform

4.  Dense Linear Algebra

5.  Sparse Linear Algebra

6.  Particles

7.  Monte Carlo

Note “vaguer” than NPB

13 Berkeley Dwarfs
•  Dense Linear Algebra

•  Sparse Linear Algebra

•  Spectral Methods

•  N-Body Methods

•  Structured Grids

•  Unstructured Grids

•  MapReduce

•  Combinational Logic

•  Graph Traversal

•  Dynamic Programming

•  Backtrack and Branch-and-Bound

•  Graphical Models

•  Finite State Machines

First 6 of these correspond to Colella’s
original.

Monte Carlo dropped
N-body methods are a subset of Particle

Note a little inconsistent in that MapReduce
is a programming model and spectral
method is a numerical method

Need multiple facets!

Distributed Computing MetaPatterns I
Jha et al, 1532-0634, 2012. DOI: 10.1002/cpe.2897CCPE

Distributed Computing MetaPatterns II
Jha et al

Distributed Computing MetaPatterns III
Jha et al

Comparison of Data Analytics with Simulation -- I

• Pleasingly parallel often important in both
• Both are often SPMD and BSP
•  Non-iterative MapReduce is major big data paradigm

– not a common simulation paradigm except where “Reduce”
summarizes pleasingly parallel execution

• Big Data often has large collective communication
–  Classic simulation has a lot of smallish point-to-point messages

• Simulation dominantly sparse (nearest neighbor) data
structures

–  “Bag of words (users, rankings, images..)” algorithms are sparse, as is PageRank
–  Important data analytics involves full matrix algorithms

Comparison of Data Analytics with Simulation - II
•  There are similarities between some graph problems and particle

simulations with a strange cutoff force.
– Both Map-Communication

•  Note many big data problems are “long range force” as all points are linked.
– Easiest to parallelize. Often full matrix algorithms
–  e.g. in DNA sequence studies, distance δ(i, j) defined by BLAST, Smith-

Waterman, etc., between all sequences i, j.
– Opportunity for “fast multipole” ideas in big data.

•  In image-based deep learning, neural network weights are block sparse
(corresponding to links to pixel blocks) but can be formulated as full matrix
operations on GPUs and MPI in blocks.

•  In HPC benchmarking, Linpack being challenged by a new sparse conjugate
gradient benchmark HPCG, while we use non- sparse conjugate gradient
solvers in clustering and Multi-dimensional scaling.

Big Data Ogres and Their “Facets”
•  The first Ogre Facet captures different problem “architecture”.

Such as (i) Pleasingly Parallel – as in Blast, Protein docking, imagery (ii) Local
Machine Learning – ML or filtering pleasingly parallel as in bio-imagery, radar (iii)
Global Machine Learning seen in LDA, Clustering etc. with parallel ML over nodes of
system (iv) Fusion: Knowledge discovery often involves fusion of multiple methods.
(v) Workflow

•  The second Ogre Facet captures source of data (i) SQL, (ii) NOSQL
based, (iii) Other Enterprise data systems (10 examples at NIST) (iv)Set of Files (as
managed in iRODS), (v) Internet of Things, (vi) Streaming and (vii) HPC
simulations.

•  Before data gets to compute system, there is often an initial data gathering phase
which is characterized by a block size and timing. Block size varies from month
(Remote Sensing, Seismic) to day (genomic) to seconds (Real time control,
streaming)

•  There are storage/compute system styles: Dedicated, Permanent, Transient

•  Other characteristics are need for permanent auxiliary/comparison datasets and these
could be interdisciplinary implying nontrivial data movement/replication

Detailed Structure of Ogres

•  The third Ogre Facet is distinctive system features such as (i)
Agents, as in epidemiology (swarm approaches) and (ii) GIS (Geographical
Information Systems).

•  The fourth Ogre Facet captures Style of Big Data applications. (i)
Are data points in metric or non-metric spaces (ii) Maximum Likelihood, (iii) χ2
minimizations, and (iv) Expectation Maximization (often Steepest descent)

•  The fifth Facet is Ogres themselves classifying core analytics
kernels (i) Recommender Systems (Collaborative Filtering) (ii) SVM and Linear
Classifiers (Bayes, Random Forests), (iii) Outlier Detection (iORCA) (iv) Clustering
(many methods), (v) PageRank, (vi) LDA (Latent Dirichlet Allocation), (vii) PLSI
(Probabilistic Latent Semantic Indexing), (viii) SVD (Singular Value Decomposition),
(ix) MDS (Multidimensional Scaling), (x) Graph Algorithms (seen in neural nets,
search of RDF Triple stores), (xi) Learning Neural Networks (Deep Learning), and
(xii) Global Optimization (Variational Bayes).

•  Flops per byte and Communication Interconnect requirements characterize fifth facet

“Many Tasks” Pathway to Extreme Scale

•  Problems in computational science naturally amenable to “task level”
parallelism model of computing:

–  “Embarrassingly Parallel” data-intensive applications
– Many free energy calculations, enhanced sampling problems.
– Many multi-physics simulations are also multi components.

•  Single application might be broken into many smaller simulations

•  This is not just HTC or HPC, but
complex application objectives
•  Isn’t about just peak perf,

nor maximal throughput
•  Given access to X cores/

nodes – slice/dice or
distribute as needed

yyy

From Many Tasks to Complex Applications

•  Starting from uncoupled heterogeneous simulations, varying levels
of coordination and dependency can be gradually added and “tuned”
– Homogeneous/Heterogeneous

– Complexity of simulation-resources mapping
– Coupling between simulations

– Different coordination mechanism
– Dependencies

– Constraints, scheduling, data transfer

•  Depending upon the above properties, the importance and
feasibility of distribution varies

D

C

H

Scalable Online Comparative Genomics of Mononucleosomes.
“Scalable Online Comparative Genomics of Mononucleosomes: A BigJob” , Proceedings of
Conference on XSEDE, 2013.

Asynchronous Replica-Exchange: Advanced Algorithms for enhanced sampling.
“A Framework for Flexible and Scalable Replica-Exchange on Production Distributed CI”, Proceedings
of Conference on XSEDE, 2013.

The Case for an Integrating Apache/Hadoop
Big Data Stack with HPC

Enhanced
Apache/Hadoop
Big Data Stack
(ABDS)

• 
• 
• 

• 
• 
• 

Bringing High Performance to Data Analytics

•  On the systems side, we have two principles
– The Apache Big Data Stack with ~120 projects has important

broad functionality with a vital large support organization
– HPC including MPI has striking success in delivering high

performance with however a fragile sustainability model

•  There are key systems abstractions which are levels in HPC-
ABDS software stack where careful integration needed

– Resource management
– Resource Fabric: Storage and Compute
– Programming model -- horizontal scaling parallelism
– Collective and Point to Point communication
– Support of iteration
– Data interface (not just key-value)

33

34

Integrating Hadoop/Yarn with HPC

HPC Scheduler (Slurm,
Torque, SGE)

YARN

Map
Reduce

Other
YARN App

YARN

MPI Pilots

YARN on HPC HPC on YARN

System-level
Scheduling

Application-level
Scheduling

HPC Apps

4 Forms of MapReduce

(a) Map Only
(d) Loosely

Synchronous
(c) Iterative
MapReduce

(b) Classic
MapReduce

Input

map

reduce e

Input

map

m

ee
reduce

Iterations
Input

Output

map

BLAST Analysis

Parametric sweep

Pleasingly Parallel

High Energy Physics

(HEP) Histograms

Distributed search

Classic MPI

PDE Solvers and

particle dynamics

 Domain of MapReduce and Iterative Extensions

Science Clouds
MPI

Giraph
ve Extensions

Expectation maximization

Clustering e.g. Kmeans

Linear Algebra, Page Rank

Mahout and Hadoop MR – Slow due to MapReduce
Python slow as Scripting; MPI fastest
Spark Iterative MapReduce, non optimal communication
Harp Hadoop plug in with ~MPI collectives

1000000 points
 50000 centroids

10000000 points
 5000 centroids

100000000 points
 500 centroids

1

10

100

1000

10000

0.1

1.0

T
im

e
(in sec)

E
ffi−

cienc y

24 48 96 24 48 96 24 48 96

Number of Cores
 Hadoop MR Mahout Python Scripting Spark Harp MPI

RADICAL-Cybertools: Usage, Usage Modes
and Applications

http://radical-cybertools.github.io/

Pilot Abstractions

Working definition: A system that generalizes a placeholder job to provide
multi-level scheduling to allow application-level control over the system
scheduler via a scheduling overlay.

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

S

pa
ce

U

se
r

S
pa

ce

Resource Manager

Pilot-Job System
Policies Pilot-Job Pilot-Job

Introduction to Pilot-Abstraction (2)

40

•  Working definitions:
–  A system that generalizes a placeholder job to provide multi-level

scheduling to allow application-level control over the system scheduler
via a scheduling overlay

–  .. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.

•  Advantages of Pilot-Abstractions:
–  The Perfect Pilot: Decouples workload from resource management
–  Flexible Resource Management

•  Enables the fine-grained (ie slicing and dicing) of resources
•  Tighter temporal control and other advantages of application-level

Scheduling (avoid limitations of system-level only scheduling)
–  Move control, extensibility and flexibility upwards

•  Build higher-level capabilities without explicit resource management

Landscape of Pilot-Job Systems

41

•  There are many PJS offerings, often semantically distinct
–  PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob…

•  Why do you think there has been a proliferation of PJs?

•  Conceptual & practical barriers to extensibility (& interoperability)
–  The landscape of PJS reflects, in addition to PJS specifics, the broader eco-

system of distributed middleware & infrastructure
–  Software Engineering issues, interfaces, standardization

•  Difference in the execution models of the PJ
–  We know what pilot-jobs do, but the how remains less clear

•  How to map tasks to pilot-jobs? How to choose/map optimal resource?
•  How to slice and dice resources?

•  Data remains a dependent variable, not a primary variable
–  Introduce the concept of Pilot-data

P* Model: Elements, Characteristics and API

•  Elements:
–  Pilot-Compute (PC).
–  Pilot-Data (PD).
–  Compute Unit (CU).
–  Data Unit (DU).
–  Scheduling Unit (SU).
–  Pilot-Manager (PM).

•  Characteristics:
–  Coordination.
–  Communication.
–  Scheduling.

•  Pilot-API.

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012

RADICAL-Pilot (BigJob): Architecture

Coarse-Grained RADICAL-Pilot Performance

•  Number of zero-payload tasks that BJ can dispatch per second:
– Distributed: O(1)
–  Locally: > O(10)

•  Number of Pilots (Pilot-Agents) that can be marshaled
–  Locally/Distributed: O(100)

•  Typical number of tasks per Pilot-Agent:
–  Locally/distributed: O(1000)

•  Number of tasks concurrently managed = Number of Pilot-Agents x
tasks per each agent :

– O(100) x O(1000)

•  (Obviously) The above depends upon data per task:
–  BigJob has been used over O(1)--O(109) bytes/task, for tasks

of duration O(1) second to O(105) seconds

RADICAL-Pilot http://radical-cybertools.github.io/radical-pilot

RADICAL-Pilot
http://radical-cybertools.github.io/radical-pilot

•  Lightweight, portable, fast, scalable pilot framework

•  Scalability (up and out)
–  Lightweight data model
–  Bulk operations
–  Notifications / support for async programming

•  Portability
–  Pure Python
–  Modular pilot agent
–  SAGA-Python as plumbing layer

•  Supports Research
–  Pluggable schedulers
–  High degree of introspection, provenance
–  Consistent and verifiable performance

SAGA: A Standardized Interoperability Layer

47

•  SAGA – Simple API for Distributed (Grid) Applications:
–  Allows access to different middleware / services through Python implementation of

Open Grid Forum GFD.90.
–  Also unified semantics across middleware, backend plug-ins (adaptors).

•  HOW SAGA is Used?
–  Uniform Access-layer to DCI, e.g, XSEDE,
–  Build tools, middleware services and capabilities

•  Pilot-Jobs, workflow systems, science gateways and web portals
–  Domain-specific (distributed) applications, libraries and frameworks

•  Functional component as well as a specific component XSEDE Architecture

SAGA: Interoperability Layer for RP

•  SAGA – Simple API for Distributed (Grid) Applications:
–  Application level standardized (Open Grid Forum GFD.90) API.
–  Application is a broad term: one person s application is another person s

tool (building block) .

•  SAGA-Python:
–  Native Python implementation of Open Grid Forum GFD.90.
–  Allows access to different middleware / services through a unified interface
–  Provides access via different backend plug-ins (adaptors).
–  SAGA-Python provides both a common API, but also unified semantics

across heterogeneous middleware:
•  Transparent Remote operations (SSH / GSISSH tunneling).
•  Asynchronous operations.
•  Callbacks.
•  Error Handling.

SAGA Schematic

Conclusion

•  A fundamental need for abstractions to support diverse set of data-
intensive applications

– Need for a balanced, interoperable and federated data CI

•  Towards High-performance Data-Intensive Computing
–  Best of both: Hadoop/Apache Big Data stack meets HPC

•  Set against these objectives: Pilot Abstraction Works!
– Better integration into HPC

•  Platform independent libraries: different application types,
execution modes, coupling schemes

– Similar “abstractions” emerging in the Hadoop BDS

References

•  RADICAL-Cybetools:
–  http://radical-cybertools.github.com/

•  RADICAL-SAGA:
– http://saga-project.github.io/radical-saga

•  RADICAL-Pilot: An implementation of P*
– http://saga-project.github.io/radical-pilot/

•  RADICAL:
– http://radical.rutgers.edu/

•  Publications:
– http://radical.rutgers/edu/publications

Acknowledgements
Graduate Students:

•  Mark Santcroos

•  Antons Trekalis

•  Vivek Balasubramanian

Research Scientists:

•  Andre Luckow

•  Andre Merzky

•  Matteo Turilli

•  Ole Weidner

Collaborators
•  Geoffrey Fox, Judy Qiu

