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ject Matsu

Matsu, or Mazu, is a goddess of the sea said to protect
fishermen and sailors.

Initially formed in response to the 2010 Haiti earthquake,
the name was chosen in the spirit of aiding those in need.

A collaboration between members of the Open Cloud
Consortium, NASA (lead, Dan Mandl| at NASA GSFC), and
others like the Namibian Department of Hydrology,
involved with NASA’s SensorWeb.

Turning earth science observations into knowledge and
information.

Maria Patterson (mtpatter@uchicago.edu) Center for Data Intensive Science, University of Chicago
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“Earth Obsérving-l launched in Nov 2000 as a one year mission.

The OSDC is used by NASA to process Earth Observing 1 (EO-1) satellite
imagery from

= Advanced Land Imager (ALI)

= 9 simultaneous wavelength bands from 0.48-2.35 um with 30-
meter resolution plus a panchromatic band with higher 10-meter
spatial resolution

= 37kmx42km
= Compare to Landsat 7
= Hyperion imaging spectrometer
= 242 wavelength bands 0.357-2.576 um with 10-nm bandwidth
= 7.7kmx42 km
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Hyperspectral satellite image data - Hyperion
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Turning earth science
observations into
actionable information

Processing and serving data Aggregating and displaying data products
- Generating (EO-1) satellite L1 « Namibia flood dashboard
and L2 data - Matsu “Wheel” analytic reports
- Web Coverage Processing - Web Map Service to publish data to an
Service for individual scenes Open Geosocial AP

- Hadoop-based Matsu “Wheel”
of analytics for processing all
daily scenes

Maria Patterson (mtpatter@uchicago.edu) Center for Data Intensive Science, University of Chicago
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Daily EO-1 Processing

Earth Observing-1 _4

NASA Goddard
Space Flight
Center

New data observed by EO-1
and downloaded to NASA

NASA images sent to OSDC Public Data
Commons cloud for permanent storage

-

OSDC Public
Data Commons
(GlusterFS)

NASA researchers
process EO-1 on

€ OSDC virtual

k machines )
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Available images for Level 1 EO-1 scenes

matsu-analytics.opensciencedatacloud.org/AvailableImages/
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Matsu Analytic Wheel

Earth Observing-1 _4

NASA Goddard
Space Flight
Center

\ R » New data observed by EO-1
$ | and downloaded to NASA

NASA images sent to OSDC Public Data
Commons cloud for permanent storage

\ \
OSDC Public s
Data Commons
(GlusterFS)

«  The Wheel “watches” for new data to become available,
using Apache Storm.

-« When new data are detected, loaded into Hadoop’s
distributed file system for analysis using MapReduce.

- The Wheel analytics run each night, daily reports available
the morning after data are received.

Maria Patterson (mtpatter@uchicago.edu) Center for Data Intensive Science, University of Chicago



Matsu Analytic “"Wheel”

Earth Observing-1

NASA Goddard
Space Flight
Center

New data observed by EO-1
and downloaded to NASA

NASA images sent to OSDC Public Data
Commons cloud for permanent storage

Wheel analytics run
over data using MapReduce

OSDC Public
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Wheel are accessible via web browser



Hadoop-based analytics

Provided by the Provided by the
programmer programmer

MAP:
Read input and
produces a set of
key-value pairs

Reduce:
Collect all values
belonging to the

key and output

Group by key:
Collect all pairs
with same key

The crew of the space (The, 1) (crew, 1)
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Hadoop-based analytics

MapReduce - Word Count Example Flow

Shuffle
&
sort
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Hadoop-based analytics

map (key, value):
// key: document name; value: text of the document
for each word w in value:
emit (w, 1)

reduce (key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in wvalues:
result += v
emit (key, result)

Maria Patterson (mtpatter@uchicago.edu) Center for Data Intensive Science, University of Chicago



SVM-based land cover classifier

Support vector machine model to predict
new data based on training set data

Training Data Spectra
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= Classifier Mapper
// Key: Scene; Value: pixels in scene
for each pixel p in value:
landclass = svim.predict(p)
emit(p, landclass)
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Wheel analytic:
SVM-based land cover classifier
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Matsu “Wheel” Spectral Anomaly Detector

= “Contours and Clusters” — looks for physical contours around
spectral clusters

= PCA analysis applied to the set of reflectivity values (spectra)
for every pixel, and the top 5 components are extracted for
further analysis.

= Pixels are clustered in the transformed 5-D spectral space
using a k-means clustering algorithm.

» For each image, k = 50 spectral clusters are formed and
ranked from most to least extreme using the Mahalanobis
distance of the cluster from the spectral center.

= For each spectral cluster, adjacent pixels are grouped together
into contiguous objects.

—> returns geographic regions of spectral anomalies that are scored

again as anomalous (0 least , 1000 most) compared to a set of
“normal” spectra, constructed for comparison over a baseline of time

Maria Patterson (mtpatter@uchicago.edu) Center for Data Intensive Science, University of Chicago



Turning earth science
observations into
actionable information

Processing and serving data Aggregating and displaying data products
- Generating (EO-1) satellite L1 « Namibia flood dashboard
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Nishinoshima active volcano, Dec, 2014

Spectral anomaly detected:

Matsu Analytic Image Report
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Spectral anomaly detected:
Barren Island active volcano, Feb, 2014




Spectral anomaly detected:
North Sentinel Island fires, May, 2014
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Spectral anomaly detected:
North Sentinel Island fires, May, 2014
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Turning earth science
observations into
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Namibia Flood Dashboard

Flood and waterborne disease risk management in Southern Africa

matsu-namibiaflood.opensciencedatacloud.org
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Namibia Flood Dashboard

Flood and waterborne disease risk management in Southern Africa
- landcover classifier wheel analytic

matsu-namibiaflood.opensciencedatacloud.org
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Sample code on OSDC

C ff  https://www.opensciencedatacloud.org/support/quickstart.html#osdc-eo-1-quick-start-tutorial

Maria Patterson (mtpatter@uchicago.edu)

OSDC EO-1 Quick Start Tutorial

Now we’ll take you step by step through a demo using NASA's Earth Observing-1 dataset. In this tutorial, we
will show you how to use OSDC to visualize and perform a simple example analysis of NASA satellite imagery
data. You will perform many tasks common to using the OSDC during this demo like launching an instance,

ssh'ing, in addition to those specific to analysis.

Here we will show you how to use Python to

 create png false-color images from GeoTiff data,

e use a machine algorithm to classify each pixel of a
scene as desert, water, cloud, or vegetation,

o view GeoTiffs and save the results of your classification
as an image.

Launch the OSDC EO-1 Instance

In the console, under ‘Images and Snapshots’, scroll down to
find the section labeled 'All Snapshots’. Here's you'll want to
find and launch the snapshot called
‘OSDC_DatasetExplorer_EO1’. We recommend using a
medium instance.

When you ssh in to both the login node and the instance,
make sure and add both the "A" and the "X" flags. The A is
for key forwarding, the X is for X11 forwarding. IE: ssh -AX

<username>@sullivan.opensciencedatacloud.org and then
ssh -AX ubuntu@<INSTANCE.IP>. If you're doing a lot of GUI

work like looking at plots and images, you’ll want to use this
X flag often.

Once you're in the instance, c¢d and run all commands from

About the Data

NASA’s Earth Observing-1 satellite (EO-1)
was launched in 2000 for the purpose of
studying new technologies in remote earth
imaging. On the OSDC, we host data from
EO-1’s two primary scientific instruments,
the Hyperion imaging spectrometer and the
Advanced Land Image (ALI). In this tutorial
we will be working with ALl data.

The ALl instrument acquires data in 9
different wavelength bands from 0.48 -
2.35 micron with 30-meter resolution plus
a panchromatic band with higher 10-meter
spatial resolution. The standard ‘scene’
(image) size projected on the Earth's
surface equates to 37 km x 42 km (width x
length). Hyperion has similar spatial
resolution but higher spectral resolution,
observing in 242 band channels from 0.357
- 2.576 micron with 10-nm bandwidth.
Hyperion scenes have a smaller standard
footprint width of 7.7 km.

Center for Data Intensive Science, University of Chicago



