Big Data & Deep Learning: A Powerful Mix

Max Welling

Universiteit van Amsterdam

University of California, Irvine

Overview

- Three exponential growth laws
- Machine learning 101
 - Unsupervised learning
 - Supervised (deep) learning
 - Generative vs. discriminative models

(ML as a "datascope")

Three Exponential Growth Laws

Exponential Growth: Big Data

Big Data

How much Data = Big Data?

- Total amount generated by humanity so far:
 4 zettabyte = 4,000,000,000,000,000,000,000 byte.
- That's 8 billion hard disks or a pile as high as the moon if every hard disc is 5 cm thick.
- Amount of data doubles about every two years.

Big Data in Astonomy

"Square Kilometer Array": 1 exabyte per day in 2024.

(1 exabyte = 1000 petabytes = 1 million terabytes = 1 million hard discs per day)

Exponential Growth: Compute Power

Moore's Law Powers Big Data

Exponential Growth: Model Capacity

10¹⁴ N=100T

Deep Neural Networks are Big!

The Power of Deep Learning

Machine Learning 101

Data-mining: Digging for Information

data = ore informatie = gold machine learning = pickaxe

Useful Information

Useful Information is information with which you can make predictions

No information

Lots of **useful** information

Lots of information but no useful information

The Information Sieve

What is this?

"To Know is to Forget"

To generalize one needs to forget the details and remember the essence.

Overfitting: An Experiment

Wisdom of the Crowd

- Everyone guesses the weight of this cow.
- Order all estimates.
- Take the middle guess (1,2,3,4,5)

Answer: 600 kg

Unsupervised Learning (no labels)

Hierarchical Clustering of Birds

(with Dilan Görür)

Topic Models

- Every document consists of a small number of topics.
- The algorithm learns the topics distribution per document as well as the words in a topic.

Supervised Learning (with labels)

Training a Classifier

Step 1: Train model

Patiënts: 3D scan + profile

Deep learning, multi layer network

Stap 2: Model Toepassen

New Subjects: 3D scan + profile

Deep learning, multi layer network

Deep Learning

- Neural networks with many layers of artificial neurons (10B parameters)
- Trained on GPUs (supercomputing at home)

Forward: Filter, subsample, filter, subsample,, classify

Backward: backpropagation

Basic Convolutional Network Operations

(slide borrowed from Li Deng)

Increasingly Abstract Features

Generative vs Disciminative?

Deep neural network

Bayesian network

- Advantages discriminative models:
 - low bias / flexible map from input to target
 - efficient training algorithms available
 - solve the problem you are evaluating on.
 - don't need Bayes rule to classify

- Advantages generative models:
 - inject expert knowledge
 - model causal relations
 - Interpretable
 - probabilities
 - unlabeled data (semi-supervised learning)

Conclusions

- Machine Learning tries to make predictions on future data by learning models from historical data.
- Big data, Moore's law and deep learning are revolutionizing AI.
- So, much, that people are getting scared....(so jump on the bandwagon!)

Don't Let Artificial Intelligence Take Over, Top Scientists Warn

Questions

