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Overview

 Three exponential growth laws

* Machine learning 101
— Unsupervised learning
— Supervised (deep) learning
— Generative vs. discriminative models

(ML as a "datascope")



Three Exponential Growth Laws



Exponential Growth: Big Data
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How much Data = Big Data?

* Total amount generated by humanity so far:
4 zettabyte = 4,000,000,000,000,000,000,000 byte.

e That's 8 billion hard disks or a pile as high as the moon if every hard disc is 5 cm thick.

 Amount of data doubles about every two years.




Big Data in Astonomy

e "Square Kilometer Array": 1 exabyte per day in 2024.

(1 exabyte = 1000 petabytes = 1 million terabytes = 1 million hard discs per day)




Exponential Growth: Compute Power
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Moore's Law Powers Big Data

Moore’s Law - 2005
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Exponential Growth: Model Capacity
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Deep Neural
Networks are Big!

2030-2050 capacity
human brain is
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The Power of Deep Learning




Machine Learning 101



Data-mining: Digging for Information

data = ore
informatie = gold
machine learning = pickaxe
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Useful Information

Useful Information is information with which you can make predictions

Lots of information but no

useful information

Lots of useful information

No information

15



The Information Sieve

useful
information
= gold

noise = grit
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What is this?




“To Know is to Forget”

abstraction
= the essence

To generalize one needs to forget the details and remember the essence.
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Overfitting: An Experiment

f(x)
4




Wisdom of the Crowd

e Everyone guesses the weight of this cow.
* Order all estimates.

* Take the middle guess (1,2,3,4,5)

Answer:
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Unsupervised Learning
(no labels)



Hierarchical Clustering of Birds

(with Dilan Gorr)
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Topic Models

* Every document consists of a small number of topics.
* The algorithm learns the topics distribution per document as well as the words in a topic.

Topic proportions and

Topics Documents assignments
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Supervised Learning
(with labels)



Training a Classifier

Step 1: Train model
Patiénts: 3D scan + profile

Stap 2: Model Toepassen

New Subjects: 3D scan + profile
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Input data

Deep Learning

Neural networks with many layers of artificial neurons (10B parameters)
* Trained on GPUs (supercomputing at home)

Convolutions Pooling

Linear
Convs Classifier

fe S~
C1 feature maps

C3 feature maps

ﬁ Forward: Filter, subsample, filter, subsample, ...., classify

— Backward: backpropagation

Object

Categories / Positions
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Basic Convolutional Network Operations

(slide borrowed from Li Deng)

Pooling

L

Convolution

L

Image




Increasingly Abstract Features

Features learned from training on different object classes.
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Generative vs Disciminative?

Bayesian network
Deep neural network
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Advantages discriminative models: §€s 8

* inject expert knowledge

* model causal relations

* Interpretable

* probabilities

* unlabeled data (semi-supervised learning)

* low bias / flexible map from input to target
» efficient training algorithms available

* solve the problem you are evaluating on.

* don't need Bayes rule to classify
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Conclusions

* Machine Learning tries to make predictions on future data by learning
models from historical data.

* Big data, Moore's law and deep learning are revolutionizing Al.

* So, much, that people are getting scared....(so jump on the bandwagon!)

Don't Let Artificial Intelligence Take
Over, Top Scientists Warn




Questions




