Designing Python Libraries
" for Rock Physics

Rosa Filgueira
Malcolm Atkinson

Joshua Einserberg

Python and Scientific Communities

* Python is a high-level programming
language, interpreted with capabilities for
object-oriented programming

* A language very easy to learn for non-
programmers

* Well structured: Easy to read and
understand code

* Well-known language with a big
community

* Free and open source

Python and Scientific Communities

e With very rich scientific computing libraries:

> Obspy: Simplifies the usage of Python programming
for seismologists.

> SymPy: Python library for symbolic mathematics
> Geopy: Python Geocoding Toolbox

o scikits.learn: A set of python modules for machine
learning and data mining

> Numpy: Array processing for numbers, strings,
records, and objects

o Scipy: Scientific Library for Python
* Most Popular libraries: http://www.s-

anand.net/blog/the-most-popular-scientific-
python-modules/

Overview of Numpy

* NumPy is the fundamental package for
scientific computing with Python. It
contains among other things:
> a powerful N-dimensional array object
> sophisticated (broadcasting) functions
> tools for integrating C/C++ and Fortran code

o useful linear algebra, Fourier transform, and
random number capabilities

Overview of SciPy

* SciPy is an open source library of
algorithms and mathematical tools for

Python.

e SciPy contains modules for optimization,
linear algebra, integration, interpolation,
special functions, FFT, signal and image
processing, ODE solvers and other tasks
common in science and engineering.

SciPy

e Available subpackages:
° constants:physical constants and conversion factors (since version 0.7.0")
> cluster:hierarchical clustering, vector quantization, K-means
> fftpack: Discrete Fourier Transform algorithms
° integrate:numerical integration routines
° interpolate:interpolation tools
° jo:data input and output
o lib: Python wrappers to external libraries
o linalg: linear algebra routines
> misc: miscellaneous utilities (e.g. image reading/writing)
> ndimage: various functions for multi-dimensional image processing
° optimize: optimization algorithms including linear programming
o signal: signal processing tools
o sparse: sparse matrix and related algorithms
o spatial: KD-trees, nearest neighbors, distance functions
o special: special functions
° stats: statistical functions
o weave: tool for writing C/C++ code as Python multiline strings

Overview of Obspy

* |t is an open-source project dedicated to
provide a Python framework for processing
seismological data.

* |t provides parsers for common file formats
and seismological signal processing routines
which allow the manipulation of
seismological time series, allowing the use of
powerful numerical array-programming
modules like NumPy and SciPy

Obspy

* General packages:

° - ObsPy core package, glues the single obspy packages together

° - Imaging spectograms, beachballs and waveforms

° - Filters, triggers, instrument correction, rotation, array analysis, beamforming

° - Converter for Dataless SEED, and SEED RESP files
* Waveform import/export plug-ins:

° - GSE2 and GSE| read and write support

° - SAC read and write support

° - MiniSEED read and write support

° - WAV (audio) read and write support

° - Q and ASC read and write support (file formats of)

° - SEISAN read support

° - SEGY read and write support
o Database or Web service access clients:

° - database client

° - request client

° - request client

° - request client

° - request client

Python and Scientific Communities

* Although there are many software tools
available for interactive data analysis and
development, there is not any library
designed for work with Rock Physics data.

A Python Toolbox for Rock Physics

e Our objective is to help scientists who
write methods, or components to be
used in methods, that will then be used in

(and with data downloaded from) the
EFFORT gateway.

* We propose a Python toolbox called
“EffortPy” to facilitate rapid application
development for rock physicists.

EffortPy aims

e Provide a full repertoire of commonly
required actions to facilitate rock

physicists to write their methods, analyses
and visualisations in Python.

* Wrap operations to enable the EFFORT
gateway to maintain the integrity of its
data, and to implement the rules

developed for governance of users'
actions.

EFFORT gateway and EffortPy

 This library will help to run the user’s
models in the gateway automatically.

* What is happening right now every time that
we have a new model:
> Modification of input parameters
> Modification of the output parameters
> Modify how the data is selected, read and written
> Modify how the results are displayed and stored.

> Once all those modifications are made, the model
is ready to execute in the gateway as many times
as the users want.

EFFORT gateway and EffortPy

In EFFORT project we want to encourage the model
sharing through the EFFORT gateway

EffortPy will facilitate us to achieve this objective:

> @Giving a description of the user’s models

> @Giving an explanation for executing the models

A lot of models have similar code inside them for doing the
same tasks:

> Plot the data in an specific format :
plot of depth vs time
plot of magnitude vs .time
plot of frequency vs. magnitude

EffortPy will have a big set of “most-common” functions that
the users can call in their codes, saving them time and effort.

There will be two variants of the EffortPy with many of the
functions completely identical

EffortPy versions: Gateway

e This variant will be used when programs
are being run under the gateway:
> Validate authorisation
> GGenerate a record metadata
> Manipulate the catalogues

> Perform a specified function.

o EffortPy will enforce the governance
rules and they make the metadata
complete and consistent.

EffortPy versions: Developers

* The developers' version will be used
when programs are used on data that
have been downloaded onto a
researcher's own computer.
> Allow developers of algorithms to explore,

tune and experiment, in order to develop
their models, analyses and visualisations.

EffortPy Gateway and Developers
versions

* The effect of all of the functions used and
the representations of internal data
structures should be identical in both
variants from the viewpoint of the
researchers.

* This is critical to ensure that code
developed and tested on a personal

machine still executes correctly when
uploaded.

EffortPy format

* We take the library style from the ObsPy
library.

* EffortPy should not attempt to replace
the functions provided by other python
libraries, such as NumPy and SciPy. It
should be complementary of them.

EffortPy Sketch

* Experiment-Data Management:
* Sharing Management

* Metadata Management

e Shared Code Management

e Continuous Stream Analysis

e Continuous Stream Generation
e Event Stream Analysis

e Result Visualisation Ultilities

