
Designing Python Libraries 
for Rock Physics
Rosa Filgueira

Malcolm Atkinson

Joshua Einserberg



Python and Scientific Communities

 Python is a high-level programming 
language, interpreted with capabilities for 
object-oriented programming

 A language very easy to learn for non-
programmers

 Well structured: Easy to read and 
understand code

 Well-known language with a big 
community

 Free and open source



Python and Scientific Communities

 With very rich scientific computing libraries:
◦ Obspy: Simplifies the usage of Python programming 

for seismologists.

◦ SymPy: Python library for symbolic mathematics

◦ Geopy: Python Geocoding Toolbox

◦ scikits.learn: A set of python modules for machine 
learning and data mining

◦ Numpy: Array processing for numbers, strings, 
records, and objects

◦ Scipy: Scientific Library for Python

 Most Popular libraries: http://www.s-
anand.net/blog/the-most-popular-scientific-
python-modules/



Overview of Numpy

 NumPy is the fundamental package for 
scientific computing with Python. It 
contains among other things:

◦ a powerful N-dimensional array object

◦ sophisticated (broadcasting) functions

◦ tools for integrating C/C++ and Fortran code

◦ useful linear algebra, Fourier transform, and 
random number capabilities



Overview of SciPy

 SciPy is an open source library of 
algorithms and mathematical tools for 
Python.

 SciPy contains modules for optimization, 
linear algebra, integration, interpolation, 
special functions, FFT, signal and image 
processing, ODE solvers and other tasks 
common in science and engineering.



SciPy
 Available subpackages:
◦ constants: physical constants and conversion factors (since version 0.7.0[4])

◦ cluster: hierarchical clustering, vector quantization, K-means

◦ fftpack: Discrete Fourier Transform algorithms

◦ integrate: numerical integration routines

◦ interpolate: interpolation tools

◦ io: data input and output

◦ lib: Python wrappers to external libraries

◦ linalg: linear algebra routines

◦ misc: miscellaneous utilities (e.g. image reading/writing)

◦ ndimage: various functions for multi-dimensional image processing

◦ optimize: optimization algorithms including linear programming

◦ signal: signal processing tools

◦ sparse: sparse matrix and related algorithms

◦ spatial: KD-trees, nearest neighbors, distance functions

◦ special: special functions

◦ stats: statistical functions

◦ weave: tool for writing C/C++ code as Python multiline strings



Overview of Obspy

 It is an open-source project dedicated to 
provide a Python framework for processing 
seismological data. 

 It provides parsers for common file formats 
and seismological signal processing routines 
which allow the manipulation of 
seismological time series, allowing the use of 
powerful numerical array-programming 
modules like NumPy and SciPy



Obspy
 General packages:

◦ obspy.core - ObsPy core package, glues the single obspy packages together 

◦ obspy.imaging - Imaging spectograms, beachballs and waveforms 

◦ obspy.signal - Filters, triggers, instrument correction, rotation, array analysis, beamforming

◦ obspy.xseed - Converter for Dataless SEED, XML-SEED and SEED RESP files 

 Waveform import/export plug-ins:

◦ obspy.gse2 - GSE2 and GSE1 read and write support 

◦ obspy.sac - SAC read and write support 

◦ obspy.mseed - MiniSEED read and write support 

◦ obspy.wav - WAV (audio) read and write support 

◦ obspy.sh - Q and ASC read and write support (file formats of SeismicHandler) 

◦ obspy.seisan - SEISAN read support 

◦ obspy.segy - SEGY read and write support 

 Database or Web service access clients:

◦ obspy.seishub - SeisHub database client 

◦ obspy.arclink - ArcLink/WebDC request client 

◦ obspy.fissures - IRIS DMC DHI/Fissures request client 

◦ obspy.iris - IRIS DMC Core Web services request client 

◦ obspy.neries - NERIES Seismic Data Portal request client 



Python and Scientific Communities

 Although there are many software tools 
available for interactive data analysis and 
development, there is not any library 
designed for work with Rock Physics data.



A Python Toolbox for Rock Physics

 Our objective is to help scientists who 
write methods, or components to be 
used in methods, that will then be used in 
(and with data downloaded from) the 
EFFORT gateway.

 We propose a Python toolbox called 
“EffortPy” to facilitate rapid application 
development for rock physicists.



EffortPy aims

 Provide a full repertoire of commonly 
required actions to facilitate rock 
physicists to write their methods, analyses 
and visualisations in Python. 

 Wrap operations to enable the EFFORT 
gateway to maintain the integrity of its 
data, and to implement the rules 
developed for governance of users' 
actions.



EFFORT gateway and EffortPy

 This library will help to run the user’s 
models in the gateway automatically.

 What is happening right now every time that 
we have a new model:
◦ Modification of input parameters
◦ Modification of the output parameters
◦ Modify how the data is selected, read and written
◦ Modify how the results are displayed and stored.

◦ Once all those modifications are made, the model 
is ready to execute in the gateway as many times 
as the users want. 



EFFORT gateway and EffortPy
 In EFFORT project we want to encourage the model 

sharing through the EFFORT gateway
 EffortPy will facilitate us to achieve this objective:
◦ Giving a description of the user’s models

◦ Giving an explanation for executing the models

 A lot of models have similar code inside them for doing the 
same tasks:
◦ Plot the data in an specific format :

 plot of depth vs time
 plot of magnitude vs .time
 plot of frequency vs. magnitude

 EffortPy will have a big set of “most-common” functions that 
the users can call in their codes, saving them time and effort.

 There will be two variants of the EffortPy with many of the 
functions completely identical 



EffortPy versions: Gateway

 This variant will be used when programs 
are being run under the gateway:

◦ Validate authorisation

◦ Generate a record metadata

◦ Manipulate the catalogues 

◦ Perform a specified function. 

 EffortPy will enforce the governance 
rules and they make the metadata 
complete and consistent.



EffortPy versions: Developers

 The developers' version will be used 
when programs are used on data that 
have been downloaded onto a 
researcher's own computer. 

◦ Allow developers of algorithms to explore, 
tune and experiment, in order to develop 
their models, analyses and visualisations. 



EffortPy Gateway and Developers 
versions
 The effect of all of the functions used and 

the representations of internal data 
structures should be identical in both 
variants from the viewpoint of the 
researchers.

 This is critical to ensure that code 
developed and tested on a personal 
machine still executes correctly when 
uploaded.



EffortPy format

 We take the library style from the ObsPy
library.

 EffortPy should not attempt to replace 
the functions provided by other python 
libraries, such as NumPy and SciPy. It 
should be complementary of them. 



EffortPy Sketch

 Experiment-Data Management:

 Sharing Management

 Metadata Management

 Shared Code Management

 Continuous Stream Analysis

 Continuous Stream Generation

 Event Stream Analysis

 Result Visualisation Utilities


