
Designing Python Libraries 
for Rock Physics
Rosa Filgueira

Malcolm Atkinson

Joshua Einserberg



Python and Scientific Communities

 Python is a high-level programming 
language, interpreted with capabilities for 
object-oriented programming

 A language very easy to learn for non-
programmers

 Well structured: Easy to read and 
understand code

 Well-known language with a big 
community

 Free and open source



Python and Scientific Communities

 With very rich scientific computing libraries:
◦ Obspy: Simplifies the usage of Python programming 

for seismologists.

◦ SymPy: Python library for symbolic mathematics

◦ Geopy: Python Geocoding Toolbox

◦ scikits.learn: A set of python modules for machine 
learning and data mining

◦ Numpy: Array processing for numbers, strings, 
records, and objects

◦ Scipy: Scientific Library for Python

 Most Popular libraries: http://www.s-
anand.net/blog/the-most-popular-scientific-
python-modules/



Overview of Numpy

 NumPy is the fundamental package for 
scientific computing with Python. It 
contains among other things:

◦ a powerful N-dimensional array object

◦ sophisticated (broadcasting) functions

◦ tools for integrating C/C++ and Fortran code

◦ useful linear algebra, Fourier transform, and 
random number capabilities



Overview of SciPy

 SciPy is an open source library of 
algorithms and mathematical tools for 
Python.

 SciPy contains modules for optimization, 
linear algebra, integration, interpolation, 
special functions, FFT, signal and image 
processing, ODE solvers and other tasks 
common in science and engineering.



SciPy
 Available subpackages:
◦ constants: physical constants and conversion factors (since version 0.7.0[4])

◦ cluster: hierarchical clustering, vector quantization, K-means

◦ fftpack: Discrete Fourier Transform algorithms

◦ integrate: numerical integration routines

◦ interpolate: interpolation tools

◦ io: data input and output

◦ lib: Python wrappers to external libraries

◦ linalg: linear algebra routines

◦ misc: miscellaneous utilities (e.g. image reading/writing)

◦ ndimage: various functions for multi-dimensional image processing

◦ optimize: optimization algorithms including linear programming

◦ signal: signal processing tools

◦ sparse: sparse matrix and related algorithms

◦ spatial: KD-trees, nearest neighbors, distance functions

◦ special: special functions

◦ stats: statistical functions

◦ weave: tool for writing C/C++ code as Python multiline strings



Overview of Obspy

 It is an open-source project dedicated to 
provide a Python framework for processing 
seismological data. 

 It provides parsers for common file formats 
and seismological signal processing routines 
which allow the manipulation of 
seismological time series, allowing the use of 
powerful numerical array-programming 
modules like NumPy and SciPy



Obspy
 General packages:

◦ obspy.core - ObsPy core package, glues the single obspy packages together 

◦ obspy.imaging - Imaging spectograms, beachballs and waveforms 

◦ obspy.signal - Filters, triggers, instrument correction, rotation, array analysis, beamforming

◦ obspy.xseed - Converter for Dataless SEED, XML-SEED and SEED RESP files 

 Waveform import/export plug-ins:

◦ obspy.gse2 - GSE2 and GSE1 read and write support 

◦ obspy.sac - SAC read and write support 

◦ obspy.mseed - MiniSEED read and write support 

◦ obspy.wav - WAV (audio) read and write support 

◦ obspy.sh - Q and ASC read and write support (file formats of SeismicHandler) 

◦ obspy.seisan - SEISAN read support 

◦ obspy.segy - SEGY read and write support 

 Database or Web service access clients:

◦ obspy.seishub - SeisHub database client 

◦ obspy.arclink - ArcLink/WebDC request client 

◦ obspy.fissures - IRIS DMC DHI/Fissures request client 

◦ obspy.iris - IRIS DMC Core Web services request client 

◦ obspy.neries - NERIES Seismic Data Portal request client 



Python and Scientific Communities

 Although there are many software tools 
available for interactive data analysis and 
development, there is not any library 
designed for work with Rock Physics data.



A Python Toolbox for Rock Physics

 Our objective is to help scientists who 
write methods, or components to be 
used in methods, that will then be used in 
(and with data downloaded from) the 
EFFORT gateway.

 We propose a Python toolbox called 
“EffortPy” to facilitate rapid application 
development for rock physicists.



EffortPy aims

 Provide a full repertoire of commonly 
required actions to facilitate rock 
physicists to write their methods, analyses 
and visualisations in Python. 

 Wrap operations to enable the EFFORT 
gateway to maintain the integrity of its 
data, and to implement the rules 
developed for governance of users' 
actions.



EFFORT gateway and EffortPy

 This library will help to run the user’s 
models in the gateway automatically.

 What is happening right now every time that 
we have a new model:
◦ Modification of input parameters
◦ Modification of the output parameters
◦ Modify how the data is selected, read and written
◦ Modify how the results are displayed and stored.

◦ Once all those modifications are made, the model 
is ready to execute in the gateway as many times 
as the users want. 



EFFORT gateway and EffortPy
 In EFFORT project we want to encourage the model 

sharing through the EFFORT gateway
 EffortPy will facilitate us to achieve this objective:
◦ Giving a description of the user’s models

◦ Giving an explanation for executing the models

 A lot of models have similar code inside them for doing the 
same tasks:
◦ Plot the data in an specific format :

 plot of depth vs time
 plot of magnitude vs .time
 plot of frequency vs. magnitude

 EffortPy will have a big set of “most-common” functions that 
the users can call in their codes, saving them time and effort.

 There will be two variants of the EffortPy with many of the 
functions completely identical 



EffortPy versions: Gateway

 This variant will be used when programs 
are being run under the gateway:

◦ Validate authorisation

◦ Generate a record metadata

◦ Manipulate the catalogues 

◦ Perform a specified function. 

 EffortPy will enforce the governance 
rules and they make the metadata 
complete and consistent.



EffortPy versions: Developers

 The developers' version will be used 
when programs are used on data that 
have been downloaded onto a 
researcher's own computer. 

◦ Allow developers of algorithms to explore, 
tune and experiment, in order to develop 
their models, analyses and visualisations. 



EffortPy Gateway and Developers 
versions
 The effect of all of the functions used and 

the representations of internal data 
structures should be identical in both 
variants from the viewpoint of the 
researchers.

 This is critical to ensure that code 
developed and tested on a personal 
machine still executes correctly when 
uploaded.



EffortPy format

 We take the library style from the ObsPy
library.

 EffortPy should not attempt to replace 
the functions provided by other python 
libraries, such as NumPy and SciPy. It 
should be complementary of them. 



EffortPy Sketch

 Experiment-Data Management:

 Sharing Management

 Metadata Management

 Shared Code Management

 Continuous Stream Analysis

 Continuous Stream Generation

 Event Stream Analysis

 Result Visualisation Utilities


