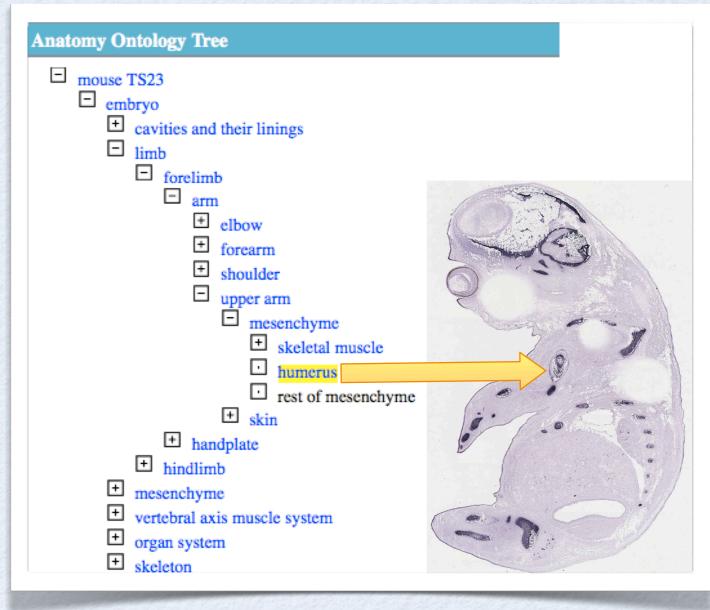
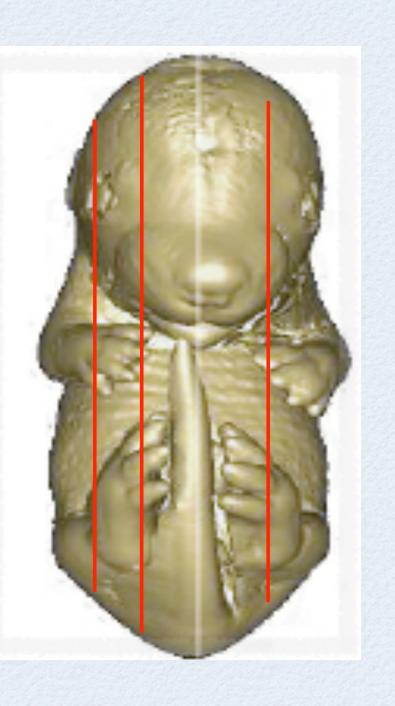
Automatic Annotation of Gene Expression Patterns for Mouse Embryo

LIANGXIV HAN

FUNDS Research Group - Future Networks and Distributed Systems School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University Group Webpage: <u>http://www.scmdt.mmu.ac.uk/research/funds/</u>



• What is Annotation?


- Motivation and Challenges
- Methodology
- Experimental and Evaluation
- Exploration of Parallelisation
- Ongoing Work


WHAT IS ANNOTATION ?- I

 Tagging an anatomical term from ontology with gene expression patterns of the anatomical component in images

WHAT IS ANNOTATION ?- 11

euxaxssay_007708_02.jpg

euxaxssay_007708_06.jpg

OUTLINE

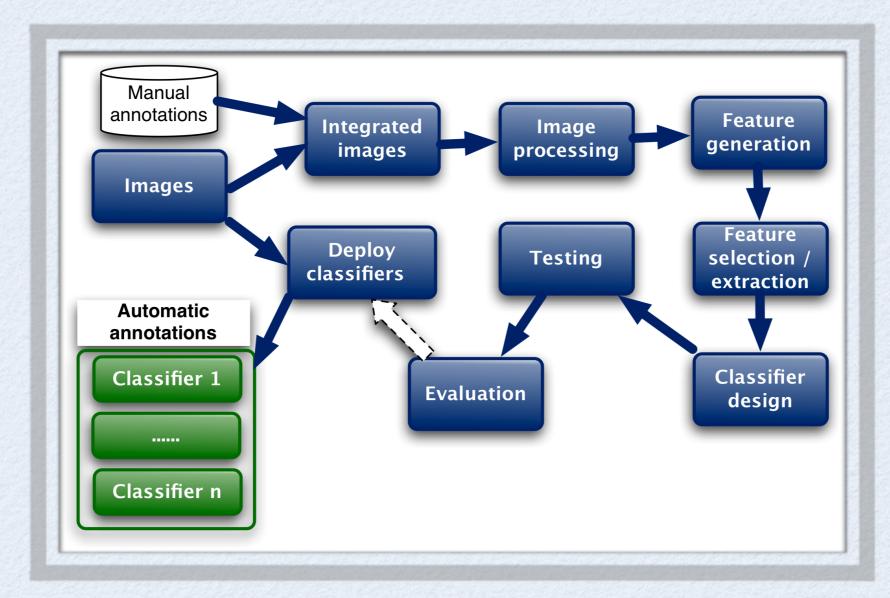
- What is Annotation?
- Motivation and Challenges
- Methodology
- Experimental and Evaluation
- Exploration of Parallelisation
- Ongoing Work

MOTIVATION & CHALLENGES-I

• Gene expression patterns --- a way to understand the *interaction between genes*

- The availability of both ontological annotation and spatial gene pattern --- a resource to identify the mechanism of embryo organisation
- The current manual annotation --- costly and time consuming
- Massive amounts of data and complicated organism ---necessity to automate the process of annotation

MOTIVATION & CHALLENGES-11

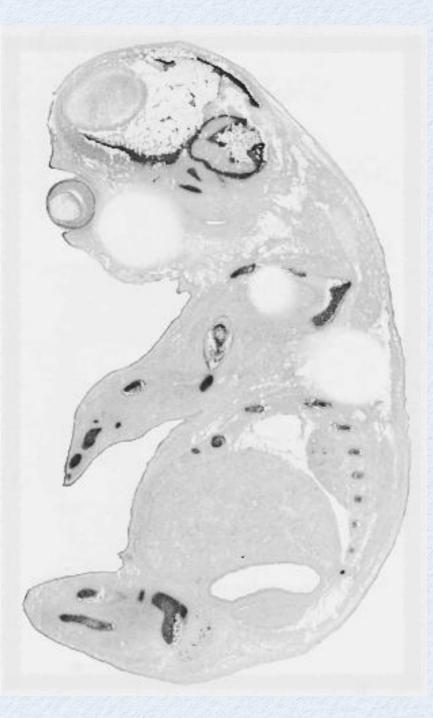

- Big data, now over 20 TB
- Multi-components coexisting in an image
- Variable shape, location and orientation of images
- The number of images associated with a certain gene is uneven
- The dimensionality of each image is high (3kx4k pixels)

OUTLINE

- What is Annotation?
- Motivation and Challenges
- Methodology
- Experimental and Evaluation
- Exploration of Parallelisation
- Ongoing Work

METHODOLOGY-1

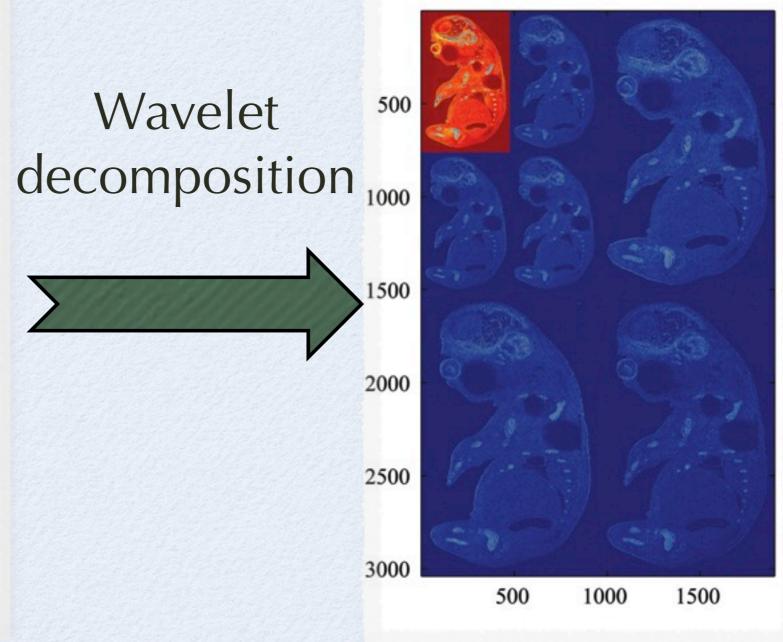
• The Framework


METHODOLOGY-11

- Image Processing
- Wavelet Transform
- Fishers'Ratio
- and LDA (SVM, ANN and LSVM)

METHODOLOGY-III

• Image Processing - Filtering



METHODOLOGY-IV

• Wavelet transform

METHODOLOGY-V

• Fishers'Ratio

$$Fisher Ratio = \frac{(m_{1,i} - m_{2,i})^2}{(v_{1,i}^2 + v_{2,i}^2)}$$

LDA (Linear Discrimination Analysis)

Linear discriminant function:

 $f(X) = W^t X + w_0$

Target function:

$$T(W) = \frac{|W^t S_B W|}{|W^t S_W W|}$$

Between-class scatter matrix Within-class scatter matrix

$$S_B = (m_1 - m_2)(m_1 - m_2)^i$$

 $S_W = S_1 + S_2$

where, $S_1 = \sum_{x \in C_1} (X - m_1)(X - m_1)^t$ and $S_2 = \sum_{y \in C_2} (Y - m_2)(Y - m_2)^t$


- What is Annotation?
- Motivation and Challenges
- Methodology
- Experimental and Evaluation
- Exploration of Parallelisation
- Ongoing Work

EXPERIMENTAL EVALUATION-I

Anatomic component	Our proposed method		SVM		LSVM		ANN	
	Se	Sp	Se	Sp	Se	Sp	Se	Sp
Humerus	0.7905 (0.0235)	0.7521 (0.0529)	0.838	0.6667	0.4992	0.4949	0.8985	0.510
Handplate	0.7231 (0.0254)	0.7125 (0.078)	1.00	0.0263	0.6739	0.75	0.5744	0.539
Fibula	0.7166 (0.0302)	0.7256 (0.085)	0.9738	0.0744	0.7253	0.719	0.7922	0.562
Tibia	0.7436 (0.02459)	0.7467 (0.051)	0.9439	0.2667	0.7511	0.74	0.9044	0.513
Femur	0.7374 (0.0403)	0.7235 (0.0607)	0.9726	0.2414	0.5613	0.6466	0.8802	0.491
Ribs	0.7519(0.0307)	0.5608(0.0717)	0.7939	0.5088	0.124	0.9018	0.7252	0.564
Petrous part	0.737(0.0316)	0.7885(0.094)	0.9854	0.1129	0.2715	0.8629	0.8015	0.629
Scapula	0.710(0.03)	0.789(0.0851)	0.9945	0.0588	0.7265	0.7529	0.8218	0.564
Head mesenchyme	0.5506(0.035)	0.8286(0.109)	1.00	0.0143	0.3045	0.8571	1.00	0.00

Sensitivity (true positive rate): the proportion of actual positives in the whole testing dataset Specificity (true negative rate): the proportion of true negatives in the whole testing dataset

EXPERIMENTAL EVALUATION-II

http://www.eurexpress.org/ee/databases/assay.jsp?assayID=euxassay_010351

This work has been published in Bioinformatics (Journal): *Han, L., van Hemert, J., Baldock, R. "Automatically Identifying and Annotating Mouse Embryo Gene Expression Patterns", Bioinformatics 27(8),pp1101-11-07, Oxford Journals, Oxford University Press. DOI:10.1093/

BIOINFORMATICS/BTR105, 2011

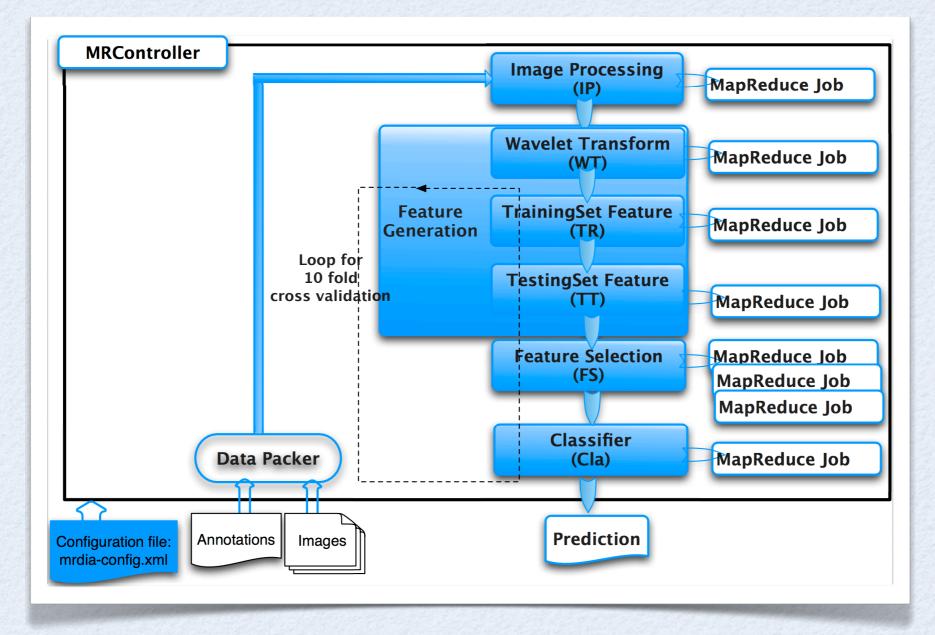
OUTLINE

- What is Annotation?
- Motivation and Challenges
- Methodology
- Experimental and Evaluation
- Exploration of Parallelisation
- Ongoing Work

PARALLELISATION EXPLORATION-1

- Parallelisation is a sought after solution for speeding up an application, particularly for data intensive applications
- Three considerations for parallelising an application
 - How to distribute workloads or decompose an algorithm into parts
 - How to map the tasks onto various computing nodes and execute subtasks in parallel
 - How to coordinate and communicate subtasks on those computing nodes.

PARALLELISATION EXPLORATION-11

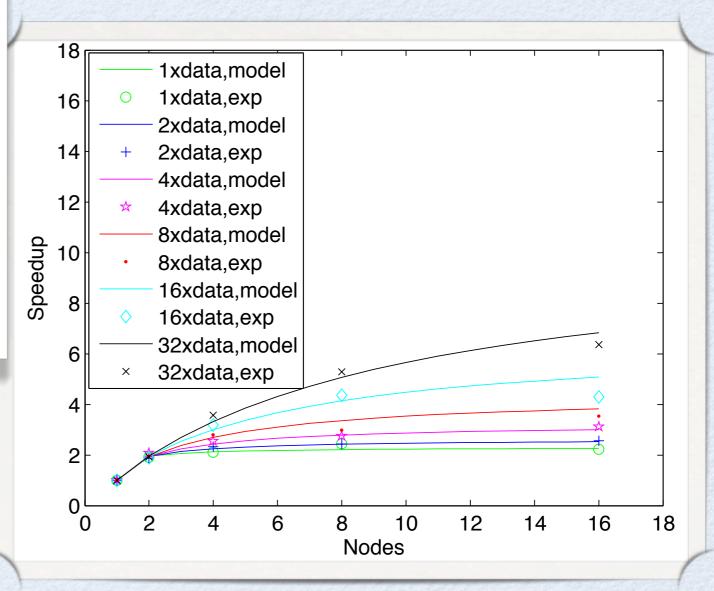

- Data Parallelism: workload are distributed into different computing nodes and the same task can be executed on different subsets of the data simultaneously
- Task Parallelism: tasks are independent and can be executed purely in parallel
- Pipelining: an iteration of a task consisting of many stages, where each stage in the task is chained and executed in order and the output of one stage is the input of the next one.

PARALLELISATION EXPLORATION-111

- MapReduce Model and Cloud computing:
 - Adapt the data mining algorithms to MapReduce model
 - Evaluate it in the Cloud (based on IaaS model)
 - ☆ A paper accepted by IEEE / ACM Grid Computing 2012

PARALLELISATION EXPLORATION-IV

• Adaptation of the data mining task to MapReduce Model


PARALLELISATION EXPLORATION-IV

- Adaptation of the data mining task to MapReduce Model
 - MRC(MapReduce) Controller: specify data files and annotation file locations, as well as the output files of data mining results. It reads the system configuration file(mrdia-config.xml) about the runtime properties (e.g., nodes, locations of the intermediary results, the k value of the k-fold cross validation)
 - Data packer is to read the raw data and repack it into the desired data structure for MapReduce jobs. It acts as an initial workload distributor

PARALLELISATION EXPLORATION-V

• Performance evaluation in the Cloud

Table I A Virtual Instance Configuration				
Item	Configuration			
CPU	4 EC2 Compute units: 2 virtual cores with 2 EC 2compute Units. Note: one EC2 Com- pute unit provides the equivalent CPU ca- pacity of a 1.0-1.2 GHZ 2007 Opteron or 2007 Xeon processor.			
Memory	7.5 GB memory			
Storage	850 GB instance storage (2x420GB plus 10 GB root partition)			
I/O performance	High			
Operating System	Federa Core 8 (2.6.21.7-2.ec2.v1.2.fc8xen Linux Kernel)			

PARALLELISATION EXPLORATION-VI

• Performance evaluation in the Cloud

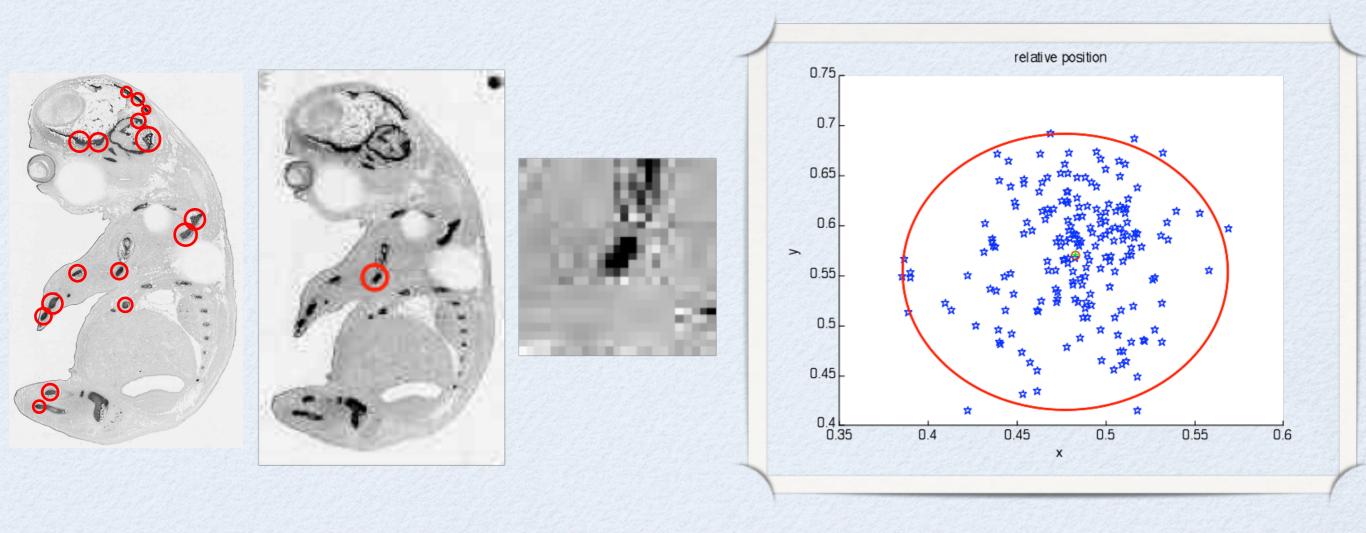
	S	PEEDUP O	of Each N	(apRedu	се Јов
	Nodel	Node2	Node4	Node8	Node16
IP	1	1.97	3.86	7.16	10.95
WT	1	2.03	3.73	5.99	10.32
TT	1	2.39	3.54	5.58	6.97
TR	1	2.12	3.80	5.39	9.84
MV	1	1.76	2.86	2.71	2.05
FR	1	3.06	3.48	3.48	3.37
TN	1	1.89	3.96	2.12	2.12
KNN	1	1.75	3.64	6.39	9.50

PARALLELISATION EXPLORATION-VII

Cost estimation: considering storage cost and using large instances

Item Description	Unit Cost	Unit	Total Cost
	(US\$)	Needed/Consumed	(US\$)
Amazon EC2			Total: 73.61
 Large Instance Type with	0.38/hr	157 hr	59.66
Linux Storage Cost	0.11/GB-Month	126.794 GB-Month	13.95
 Privately-Owned Cluster* Dell Inspiron Zino HD 	478.99/pc	12	5747.88

PARALLELISATION EXPLORATION-VIII


- A cheaper solution than buying your big machines when performing experiments/tests (very suitable for pilot study)
- MapReduce model and Cloud computing can improve the performance. The speedup depends on the parallelisation of algorithms
- Not just press a button, you need a precooked prototype (especially when adopting IaaS model)

OUTLINE

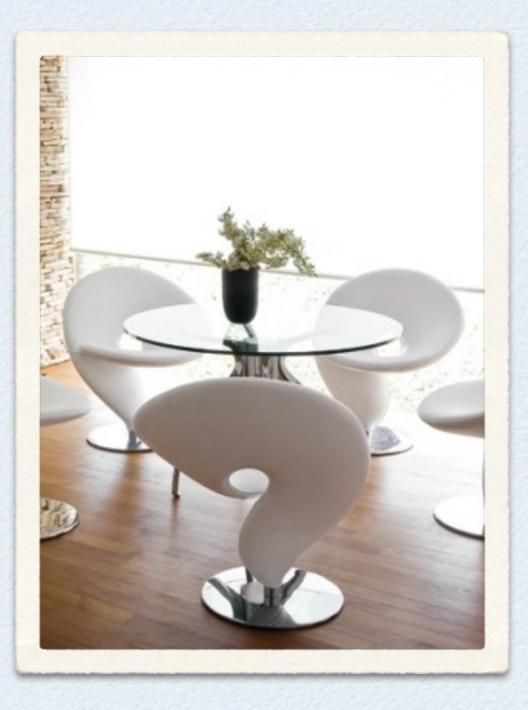
- What is Annotation?
- Motivation and Challenges
- Methodology
- Experimental and Evaluation
- Exploration of Parallelisation
- Ongoing Work

ONGOING WORK-1

- Data mining side
 - Feature extraction (locate the region, process the region of the image, and reduce computing time)

ONGOING WORK-11

Parallelisation and cloud computing side


- Development of parallelisation algorithms
- Development of data-reuse mechanism for costeffective and optimisation of the data intensive applications running in the Cloud
- Funding support from BBSRC (in collaboration with MRC, Prof. Richard Baldock)

Acknowledgement and Collaborators

- Prof. Malcolm Atkinson: University of Edinburgh
- Dr. Jano van Hemert: Optos PLC
- Prof. Richard Baldock: Medical Research Council, Human Genetics Unit, Edinburgh
- ADMIRE project (EU-FP7), <u>http://www.admire-project.eu</u>

FUNDS Research Group

- Group members: Liangxiu Han, Thar Baker, Mohammad Hammoudeh, Andy Nisbet, Maybin Muybe and a RA to be recruited
- Associate member: Darren Dancey
- Students:
 - ☆ 7 PhDs enrolled

THANK YOU