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ABSTRACT
As the difficulty and cost of generating data has decreased,
there have been emerging problems of data movement be-
tween where it was collected to where it can most effectively
be processed. The Science DMZ model is an established
solution to help maximize the throughput from any given
network infrastructure between sites but there still exists
room for exploration and improvement, including the use of
Software-Defined Networking (SDN). We aim to explore how
the use of SDN-enabled flows in a Science DMZ may impact
its main trait: performance. In this paper we have success-
fully demonstrated improvements in data transfer between
certain sites and under certain conditions. Though we have
also seen sites where there is no difference or even a per-
formance penalty, all the results are consistent and repro-
ducible over hundreds of test transfers suggesting there are
unique properties of each site configuration leading to real
and sustained performance increases to a Science DMZ.
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1. INTRODUCTION
In early 2015, a little over a decade after the first draft
of the human genome was published in 2003, the United
States announced a new $215-million precision medicine ini-
tiative [5]. Though daunting in scale at its goal to collect
high-throughput biological (e.g., genomic) data from mil-
lions of individuals, it follows as a natural progression of in-
creasingly larger-scale sequencing studies such as the 1,000
genomes [1], The Cancer Genome Atlas (TCGA) among oth-
ers. The exponentially decreasing cost of sequencing an
individual’s genome has dwarfed the rate of Moore’s law
and turned medicine into a big data discipline. There are
even predictions in the scientific community that it will ex-
ceed the storage growth rate of established big data fields
such as online video (YouTube), social media (Twitter), and
astronomy (Australian Square Kilometre Array Pathfinder
project). Conservative estimates put genomics on par with
these other fields at two exabytes of genomic data by 2025
to more extreme predictions of up to 20 orders of magni-
tude more [10]. The computational resources required to
process this data will also grow in tandem. The second
sizable challenge is security. Precision medicine is defined
as human-subjects research and must comply to regulation
that ensure the privacy and confidentiality of research sub-
jects (e.g., HIPAA). Therefore, the transfer of data must
also be secure.

Regardless of the discipline, moving large volumes of data
between sites has been increasingly stressed by the ease of



Figure 1: A network diagram of data as it transits
the internet from the DTC to the DTN through a
Science DMZ

data accumulation; pockets of data rich and data poor sites
naturally form. Particularly in the genomics field, there is
a tension between data production centers, such as those
producing next-generation genomic sequencing information,
and supercomputing or cloud data centers that have com-
putational resources required to process and analyze data.
Through domestic initiatives such as ESnet and Internet2
and international ones between North and South America
such as AmLight [6], improved bandwidth interconnectivity
and other data transfer methods were introduced to address
increasing data sizes. However, even with sufficient 10 Gi-
gabit bandwidth infrastructure between locales, there are
blocks to the natural flow of data such as stateful firewalls
that the Science DMZ was created to address [3]. The con-
cept of a Science DMZ has also been adopted internationally,
particularly in Brasil, with a similar nation-wide initiative
from Brazil’s National Research and Educational Network
(RNP - Rede Nacional de Ensino e Pesquisa) led by the
University of São Paulo (USP) researchers [2].

2. SDN-ENABLED SCIENCE DMZ
Software-Defined Networking (SDN) has been a maturing
technology that has seen measured rates of adoption in the
real-world [7]. The use of a SDN-enabled Science DMZ was
proposed by Dart, et al. in 2013 but we describe the imple-
mentation and benchmarking of it in practice for genomics.

At USP we are using a Brocade hybrid Openflow switch
(CES-2024C-4X) with the latest firmware update (v5.8.0)
for the Science DMZ. The University’s border router and
the SDN controller are connected to a non-OpenFlow vlan
(vlan1), whereas the Data Transfer Node (DTN) has ports
both in vlan1 and in an OpenFlow-enabled network segment
(vlan4000). A physical loop connects both segments.

As shown in Figure 1, Data Transfer Clients (DTCs) running
on different external sites initiate a request for file transfer to
the DTN at USP via a REST API call to the SDN controller,
which will then insert OpenFlow rules into the switch in
order to enable traffic from each DTC to reach the DTN.
Upon completion of transfer the flows will subsequently be
removed.

Using the ovs-ofctl OpenFlow command we create four dis-

tinct flows on the switch via a REST API on the SDN con-
troller when the request is initiated. Two of them handle
ARP packets to and from the DTN. The third directs IP
packets destined for the DTN to the OpenFlow-enabled port
through the physical internal cable loop, while the last one
handles packets leaving the DTN in the reverse direction
through the internally looped port bridge. When a transfer
is finished another call to the REST API on the SDN con-
troller will destroy the OpenFlow table and prevent packets
from reaching the DTN.

3. DATA TRANSFER
As the goal of any Science DMZ is to optimize data transfers,
we aim to show that the use of additional features provided
by SDN come at no expense to existing performance. We
use one of the first available full genome sequences from an
individual as our transfer data set [8] where the goal is to
process and map the genome from raw data at a compute-
rich cloud or HPC site then transfer the assembled sequence
via USP’s Science DMZ. All machines involved are running
Linux (CentOS 6.6) using GridFTP 5.2.5 for the transfer
agent. As disk latency is known to also be a factor in data
transfer we will try different storage options on the DTC to
a local RAID-1 disk on the DTN at the Science DMZ. In
each condition we will perform 100 file transfers and record
their average speed in Mbps.

3.1 Personalized Medicine
The chemical DNA of an individual is comprised of approx-
imately 2.8 billion base pairs (bps) divided into 23 pairs of
chromosomes of which each base is represented by a single
IUPAC code as ASCII on disk with accompanying metadata.
The most common method of sequencing a genome involves
shearing chemical DNA into fragments of several hundred
bps and sequencing each fragment from one or both ends,
using the sequence piece to map to a reference genome. The
mapping process is computationally intensive though em-
barrassingly parallel in nature. The genome to be assem-
bled and transferred was sequenced at 7.5-fold coverage and
is 180 Gb of raw data and 2.8 Gb of processed data on disk
though the standard now is commonly 30-fold coverage or
greater. Details on the raw data and processing protocol
are beyond the scope of this paper and can be described in
detail in Levy, et al.

3.2 Academic and Commercial Clouds
Cloud computing is an attractive option for processing data
as it allows for elasticity; the cloud can dynamically scale to
fit the task at hand and costs are only commensurate with
the resources required of a project. Despite the availability
of cloud solutions, adoption of it has been slow for research
projects though in recent years regulatory and funding sup-
port has caught up to the changing research paradigm [9].

The Open Science Data Cloud (OSDC) is an academic cloud
and data commons running OpenStack hosted at the Uni-
versity of Chicago [9]. Academic clouds are useful for being
specialized to individual research domains and more forgiv-
ing as a private research environment. For example, Bionim-
bus is an academic cloud for biomedical research providing
a central data commons in conjunction with the elastic com-
pute services [4]. In our example we are running a m1.large



Figure 2: Genome transfer using GridFTP with
and without OpenFlow enabled between academic
(OSDC) and commercial (AWS) clouds with the
USP Science DMZ

instance on the OSDC with virtual and GlusterFS storage
options as a DTC.

In the commercial cloud computing space players such as
Google, Amazon, Microsoft, and Rackspace have established
solutions. The benefit of a commercial solution is the pro-
prietary engineering behind each cloud, which is often de-
rived from the company’s experience delivering other ser-
vices through their proven global infrastructure. Using the
Amazon Web Services (AWS) cloud a DTC was provisioned
on an m3.xlarge instance with a SSD backed EBS in the
Northern Virginia (US) zone.

When transferring from a virtual filesystem on OSDC we
experienced statistically significantly faster data transfers
(p=2.45e-3), an increase from 630 to 663 Mbps on average
at 5% improved throughput (Figure 2, left panel). Using the
same DTC on OSDC with the GlusterFS volume we expe-
rienced no change in data transfer performance (p=0.379)
from the normal transfer at 615 Mbps on average though the
variability in speeds increased 2.4-fold from an IQR of 48.9
to 120 Mbps under SDN transfers (Figure 2, middle panel).

Using AWS we saw slower average file transfer speeds com-
pared to the OSDC and no difference in speed using normal
or SDN-enabled flows (p=0.538). However, there was much
greater consistency for each transfer at 539 Mbps on aver-
age for normal conditions and only a 5.44 Mbps difference
in IQR between normal and SDN flows in AWS (Figure 2,
right panel).

3.3 Top500 and Academic Medical HPC Cen-
ters

Supercomputing sites such as those found in the Top500 are
an attractive solution to help process data; a network of
HPC centers form the backbone of the Extreme Science and
Engineering Discovery Environment (XSEDE) consortium
in the US [11]. Among one of the sites is the Stampede
supercomputer at the Texas Advanced Computing Center

Figure 3: Genome transfer using GridFTP with
and without OpenFlow enabled between Top500
(TACC) and academic medical (HMS) supercom-
puting centers with the USP Science DMZ.

(TACC), among the top 10 clusters in the world as mea-
sured by more than 5,000 Teraflops of processing power. At
TACC the data was staged for file transfer on two sepa-
rate production Lustre-based storage devices functioning as
home and scratch directories.

In the area of precision medicine, genomes are processed lo-
cally to where the samples are collected at academic medical
centers and supporting HPC facilities are the first to analyze
the data. For example, the Orchestra cluster has over 7,000
CPU cores to support Harvard Medical School (HMS) and
its 12 affiliated hospitals in all fields of biomedical research.
At HMS the transfer data was staged on a local SSD storage
volume.

Using the DTC at HMS we demonstrated a statistically
significant increase in file transfer performance using SDN
(p = 2.2e-16). Speeds to USP increased from 403.2 Mbps
(sd=61.6) to 541.0 Mbps (sd=48.2) on average, a 34.2% in-
crease in performance throughput (Figure 3, left panel).

From the TACC site there were mixed results with no change
in average file transfer performance speeds using home (p =
0.199) but a performance penalty under scratch (p=3.55e-
11) designated Lustre devices. Using the home device we
averaged 450.3 Mbps of transfer while under scratch the
average speed decreased from 470.8 to 371.0 Mbps, a per-
formance degradation of 21% (Figure 3, middle and right
panels).

4. DISCUSSION
Though Science DMZs have been an established technol-
ogy to improve data transfer performance, we sought to
explore methods of further optimizing it or extending its
functionality by means of the SDN paradigm. Through our
exploratory survey we received mixed results including per-
formance increases at the OSDC (virtual) and HMS, indiffer-
ent results through AWS and OSDC (GlusterFS) and TACC
(home), and even performance decreases at TACC (scratch).



Given that each of these transfer sites is a production envi-
ronment and tests were done over multiple days it is diffi-
cult to control with 100% certainty all potential confounding
variables. For example, internal TACC benchmarks have
the scratch device capable of 160 GBps of max throughput
versus 12 GBps for home. Neither of these should be rate
limiting properties for our tests yet file transfers from TACC
using scratch had worse performance under SDN flows.

SDN-enabled Science DMZs remain a viable option for op-
timizing the secure transfer of potentially private genomics
data on many thousands of individuals, however we have
shown that performance is context dependent and confounded.
The results presented are promising and we recommend fur-
ther study and consideration. In particular, it is our intent
to execute increased testing under more controlled condi-
tions to better understand enabling and penalizing factors
for SDN-enabled data transfer. Future work includes ex-
tending the protocol between the DTC and SDN controllers
for supporting additional features, such as improved secu-
rity methods through key-based authentication prior to flow
modification and using dynamically provisioned Layer-2 cir-
cuits (such as the ones provided by Internet2 ION service)
for lower latency data transfers to the DTN.
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