
Performance Assessment of Large Astronomical
Databases

A comparison of row-oriented vs column-oriented databases
for the Vista Variables in the Via Lactea (VVV) Survey

Maria Patterson1, Iraklis Klampanos2, Ross Collins3, Nicholas Cross3, Mark
Holliman3, Robert Mann3, and Malcolm Atkinson2

1Open Science Data Cloud NSF PIRE Fellow
2University of Edinburgh, School of Informatics

3University of Edinburgh, Royal Observatory, Edinburgh

We assess the relative performance of two database
management systems (DBMS) for a large astronom-
ical detection catalog from the VISTA Variables in
the Via Lactea (VVV) Survey, a sub-survey of the
Visible and Infra-Red Survey Telescope for Astron-
omy (VISTA). The VVV is a multi-epoch and multi-
band survey aimed at detecting variable stars across the
Galactic plane and bulge. The data collected have a
detection table growing to over 1e11 rows and 132+
columns. For database performance testing, we use a
subset of the data (1e7 rows) and compare the perfor-
mance of MS SQL Server 2012, the currently imple-
mented row-oriented DBMS, to MonetDB, a column-
oriented DBMS. The two DBMSs are evaluated in three
realistic tasks in terms of time efficiency and resource
(disk I/O and CPU) use. We find that, in these three
tasks, MonetDB significantly outperforms the existing
MS SQL database.

1 Introduction
The success of large astronomical sky surveys such as
the Sloan Digital Sky Survey (SDSS) has revolution-
ized data collection in observational astronomy. Small
scale telescope observations performed by individual
astronomers are becoming increasingly less common, in
favor of dedicated surveys producing massive data sets.
SDSS has produced 50 TB of data with an 18 TB object
catalog of 357 million unique objects (Abazajian et al.,
2009). The upcoming Large Synoptic Survey Telescope
(LSST) will produce 60 PB with an object catalog of 20
billion rows (Ivezic et al., 2008). Accompanying the

wealth of new data are the problems associated with
handling very large data sets. Astronomers are becom-
ing less limited by availability of data, but by the ability
to quickly and easily handle large data sets and perform
analysis.

This paper assesses the relative performance of two
database management systems (DBMS) for data from
the VISTA Variables in the Via Lactea (VVV) Sur-
vey (Saito et al., 2012) a public sub-survey of the Vis-
ible and Infra-Red Survey Telescope for Astronomy
(VISTA) with the goal of detecting variable stars across
the Galactic plane and bulge (see also Cross et al.,
2012). The data collected are multi-epoch in five near-
infrared filters, with a detection table expected to grow
to over 1011 rows and 132+ columns. Using these de-
tection data, we compare the performance of MS SQL
Server 2012, the currently implemented row-oriented
database management system, to MonetDB, a column-
oriented DBMS. Currently, the VVV detection table is
split both vertically and horizontally in order to more
quickly process complete tasks such as whole-column
recalibration updates, which are slow when achieved
through row-by-row update statements. The goal of
this research is to quantify the possible gain in time
and resource use efficiency with the implementation of
a column- oriented DBMS.

1



2 Experimental Setup

2.1 Data Sets
The largest table in the VVV database is the object de-
tection catalog, which currently has 3×1010 rows of
source detections and 132 columns of various measure-
ments such as photometric or astrometric properties.
For our analysis, we use a subsets of 1×107 rows of this
detection table to test relative DBMS performance. This
small subset, which we will refer to as vvvDetectionS-
mall, is able to fit in memory. Further research with this
experiment should also use larger subsets that are un-
able to fit in memory for a deeper analysis of scalabil-
ity. We had planned to use various subsets of increasing
size, but difficulties with virtual machine and disk fail-
ures and subsequent loss of data during the 6 week fel-
lowship limited our time. We run the same SQL queries
for this data set in both MS SQL Server 2012 and Mon-
etDB with the same hardware configuration and assess
the relative performance of the databases with the data
set.

2.2 VMs and Hardware Configuration
We created two virtual machines through the KVM Vir-
tualization platform, one running a Windows Server
2008 R2 operating system for MS SQL Server and one
running Debian Linux jessie for MonetDB. Each VM
has its own dedicated physical disk with 12 cores, 12
GB of memory, and a dedicated, physical 6 TB disk
drive.

3 Methodology

3.1 System Monitoring
To acquire system and process performance statistics,
we wrote and implemented a monitoring program that
retrieves the relevant information via the Python module
psutil (http://code.google.com/p/psutil/, ver-
sion 1.0.1 ). Because psutil is cross-platform, it of-
fers a consistent method for tracking process and sys-
tem utilization information in both Windows and Linux.
Throughout each test query at small time intervals, we
retrieve the following CPU, I/O, and memory informa-
tion, in addition to the total runtime of the task.

• system-wide CPU utilization in percentage
• system disk I/O statistics (number, size in bytes,

and time in milliseconds of each read and write)
• disk I/O statistics (number and size in bytes) for

every instance of the each database’s server pro-
cess

• number of threads used for each server process

• number of voluntary and involuntary context
switches for each server process

• CPU user and system times for each server process
• memory for each server process (Resident Set Size

(RSS) and Virtual Memory Size (VMS) in bytes)

The monitoring code is run through Python from the
command line using BASH shell in Linux and Power-
shell in Windows and executes queries via mclient for
MonetDB and sqlcmd for MS SQL Server.

3.2 Queries and Usage Patterns
We compare the relative performance of MS SQL
Server and MonetDB with the small vvvDetectionSmall
data table by monitoring three tasks described below.
These tasks are currently used by the Vista Science
Archive for the VVV Survey and are typical of tasks
used for astronomical catalog data curation.

3.2.1 Bulk inserting data (Task A)

This task involves ingesting the data for an entire ta-
ble of 132 columns and 107 rows for vvvDetectionSmall
into each database. The data is read from a column-
separated value file mounted in a shared location to each
VM and loaded into the databases using the command
BULK INSERT in MS SQL Server and the equiva-
lent command COPY INTO in MonetDB. We repro-
duce the same schema used in the actual VVV Survey
database with identical schemas for both test tables in
the MS SQL Server and MonetDB, using a primary
key of three attributes - multiframeID, extNum, and se-
qNum.

3.2.2 Inserting and updating seq. IDs (Task B)

This task involves two queries to add rows of new data
to the existing object detection table, which might be
done after a night’s or month’s worth of observations are
completed. The current process for adding data to the
VVV Survey detection table involves 1) inserting the
new rows of data with the objID attribute as some nega-
tive number and then 2) updating these negative objIDs
to provide sequential unique IDs for every detection.

3.2.3 Column updates for recalibration (Task C)

This task involves updating several columns for all
detections in a single detector (i.e., updating several
columns for all rows of a subset of the referenced pri-
mary key), which is necessary for the recalibration of
photometric or astrometric measurements. We moni-
tor a simulated photometric recalibration of 20 columns
for two subsets of the detection tables equivalent to two
types of detectors. The first is a pawprint (∼ 104 rows),

2



and the second is a tile (∼ 106 rows), determined by
an appropriate WHERE clause selecting on a combina-
tion of multiframeID and extNum. These pawprint and
tile detection subsets are chosen to be completely con-
tained within the vvvDetectionSmall table, which is it-
self a subset of the vvvDetection table, ensuring that the
same number of rows are updated in each table.

4 Results and Ongoing Work
In Table 1 below, we present a run-time summary of the
two systems MS SQL Server vs MonetDB in each of
the three tasks described above. MonetDB significantly
outperforms MS SQL Server in terms of speed for each
query tested. The tasks run in MonetDB are anywhere
from a factor of 2-200 times faster than the same tasks
run in MS SQL Server. Column updates in particular
are much faster with MonetDB than MS SQL Server,
which is expected given its column-oriented nature.

Figures 1-5 show CPU and I/O activity during the ex-
ecution of the queries involved in each Task in MS SQL
Server (blue) and MonetDB (red). The run time for each
query is given along the x-axis. Given our results from
the three tasks tested, MonetDB appears to be a faster
and more efficient database management system for the
VVV detection table data.

An ongoing analysis of the two DBMSs for use with
the VVV survey can continue this work in a number of
ways. First, an extended analysis with various larger
data sets would be useful to test the scalability of each
DBMS for databases too large to fit in memory, like
the full VVV detection table. Additionally, this anal-
ysis was limited to testing of queries with one table. It
would also be useful to compare each DBMS’s perfor-
mance across multiple tables using JOIN .

References
Abazajian, K. N., et al. 2009, ApJS, 182, 543

Cross, N. J. G., et al. 2012, A&A, 548, A119

Ivezic, Z., et al. 2008, ArXiv e-prints

Saito, R. K., et al. 2012, A&A, 537, A107

3



vvvDetectionSmall (107 total rows)
Task A Task B Task C

(5.5×106 affected rows) (104 | 106 affected rows)
N/A Part 1 Part 2 Part 1 Part 2

MS SQL 4729 786 75.2 22.7 57.7
MonetDB 520 416 2.6 0.1 7.0

Table 1: Run-time summary (seconds)

(a) I/O and CPU statistics for bulk loading all data into the
MS SQL vvvDetectionSmall table.

(b) I/O and CPU statistics for bulk loading all data into the
MonetDB vvvDetectionSmall table.

Figure 1: CPU and I/O results for Task A

(a) I/O and CPU statistics for inserting new rows into the
MS SQL vvvDetectionSmall table.

(b) I/O and CPU statistics for inserting new rows into the
MonetDB vvvDetectionSmall table.

Figure 2: CPU and I/O results for Task B Part 1

4



(a) I/O and CPU statistics for updating sequential IDs for
new rows added to the MS SQL vvvDetectionSmall ta-
ble.

(b) I/O and CPU statistics for updating sequential IDs for
new rows added to the MonetDB vvvDetectionSmall ta-
ble.

Figure 3: CPU and I/O results for Task B Part 2

(a) I/O and CPU statistics for updating 20 columns for re-
calibration of one ’pawprint’ (22,607 rows) in the MS
SQL vvvDetectionSmall table.

(b) I/O and CPU statistics for updating 20 columns for re-
calibration of one ’pawprint’ (22,607 rows) in the Mon-
etDB vvvDetectionSmall table.

Figure 4: CPU and I/O results for Task C Part 1

(a) I/O and CPU statistics for updating 20 columns for re-
calibration of one ’tile’ (1,042,194 rows) in the MS
SQL vvvDetectionSmall table.

(b) I/O and CPU statistics for updating 20 columns for re-
calibration of one ’tile’ (1,042,194 rows) in the Mon-
etDB vvvDetectionSmall table.

Figure 5: CPU and I/O results for Task C Part 2

5


