
Semantics and Provenance for Processing Element Composition

in Dispel Workflows

Eric Griffis
UCLA

Los Angeles, CA 90095
eric@emdti.com

Paul Martin
University of Edinburgh

Edinburgh EH8 9AB
pmartin@staffmail.ed.ac.uk

James Cheney
University of Edinburgh

Edinburgh EH8 9AB
jcheney@staffmail.ed.ac.uk

1 Introduction

There have been a great number of workflow management systems developed specifically for e-science
applications [2]. Many graphical workflow systems exist in the context of a number of other frameworks
for large-scale scientific data processing. Though graphical composition has many advantages, the vi-
sual construction of workflows can become cumbersome as the structural complexity of those workflows
increases. Many of these systems have at some point developed their own description languages such
as MOML (Kepler) and SCUFL (Taverna). These languages are generally declarative, designed to be
machine-readable, and typically generated via some graphical interface. However, such interfaces typi-
cally do not support schematic definitions of workflows, i.e. generic workflows specifying computations
at a higher level of abstraction than regular workflows. Thus, there exists a usecase for human-writable
workflow composition languages that use conventional programming constructs to succinctly describe
the construction of workflows such that a workflow description can be generated by executing a simple
script. Human-writable workflow composition languages already exist, but are usually strongly tied to a
particular data processing framework.

Dispel is a workflow composition language intended for distributed, data-intensive, streaming-pipeline
applications [1]. It is designed to insulate researchers from the underlying computational middleware used
in such applications by relying on generic components published in an open repository. Applications are
modeled as pipelines of persistent processing elements that consume and produce data streams [3]; the
composition of these elements and the data-flows between them determine the behavior of the system as
a whole.

While it has much in common with other (graphical or textual) workflow languages mentioned above,
Dispel’s distinctive feature is the capability to use programming features to construct families of work-
flows. The key aspect of Dispel that makes this possible is the capability to define composite processing
elements (or composite PEs), that is, subroutines that construct subgraphs of the final workflow graph.
Among other applications, composite PEs can be used to define generic libraries of pipelined operations,
to abstract over families of graph structures, and to wrap functionality such as provenance tracking [4].

2 Implementation

To increase confidence in the correctness of our formal semantics, we implemented an interpreter in Racket
1, a programming language similar to Scheme. We translated each rule directly into a Racket function.
Dispel also has two existing implementations (with a common core library): the main implementation is
a Web gateway that accepts Dispel programs, communicates with a registry and repository to obtain PE
implementations, and submits the resulting job to the OGSA-DAI distributed enactment engine. The
second implementation, Dispel-Lite, is a lightweight wrapper to the main Dispel parser and interpreter
that requires all PE implementations to be provided locally, and runs them locally.

Our Racket implementation was developed as a way of testing assumptions made in our semantics
against the actual behavior of Dispel (in practice, we primarily compared with Dispel-Lite, which has
some known differences in behavior from the main Dispel implementation). We compared the behavior

1http://racket-lang.org/



Dispel 
Gateway

pe1 R1
pe2 R2
pe3 R2
pe4 R3
pe5 R3

Registry

Execution
Engine

sc
rip

t

re
su

lt

workflow
+ 

PE impls

PE implementations

PE
 na

mes

result

PE
 re

fer
enc

es

Repositories

R2
R3 PE references

R1

(1)

(2)

(3) (4)

(5)

sc
rip

t

wo
rk

flo
w

Dispel 

(6)

Figure 1: Dispel architecture. In a typical run, a user (1) submits a script to the gateway, which (2) looks
up the primitive PEs referenced in the script in the registry and (3) obtains their implementations from
the repositories. The script is evaluated (4) to a workflow, and (5) the workflow and PE implementations
are submitted the job to the computational back-end for execution; the end result (6) is made available
to the user.

predicted by the semantics with the Dispel-Lite implementation on several small examples. The lessons
learned from these comparisons are already incorporated into the operational semantics rules, particularly
those having to do with port references, linking statements, and the different stages of PE initialization
and composition.

3 Conclusion

We have presented a formal semantics for a core subset of Dispel, a scripting language for defining work-
flows. Dispel supports some distinctive features, such as processing element composition, that are not
described formally in any previous work to the best of our knowledge. Although we have focused on
a sublanguage and have not yet extended the semantics to handle all features of Dispel, the remaining
features (arrays, records, etc.) are mostly standard or straightforward. We also discussed an implemen-
tation we have developed to compare the semantics with the actual behavior of Dispel programs, and
shown how to adapt the semantics to partially support simple forms of provenance tracking. This paper
represents work in progress and the immediate next steps are to flesh out (and prove correctness for)
the provenance semantics, and experiment with techniques for recording provenance at different levels of
granularity based on user preferences.

References

[1] Malcolm Atkinson, Chee Sun Liew, Michelle Galea, Paul Martin, Amrey Krause, Adrian Mouat,
Oscar Corcho, and David Snelling. Data-intensive architecture for scientific knowledge discovery.
Distributed and Parallel Databases, 30(5-6):307–324, 2012.

[2] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Workflows and e-Science: An
overview of workflow system features and capabilities. Future Generation Computer Systems,
25(5):528–540, 2009.

[3] Liangxiu Han, Chee Sun Liew, Jano Van Hemert, and Malcolm Atkinson. A generic parallel processing
model for facilitating data mining and integration. Parallel Computing, 37(3):157–171, 2011.

[4] Alessandro Spinuso, James Cheney, and Malcolm P. Atkinson. Provenance for seismological processing
pipelines in a distributed streaming workflow. In Giovanna Guerrini, editor, EDBT/ICDT Workshops,
pages 307–312. ACM, 2013.


